线性子空间的交、并、和、维数与直和等各种关系总结

线性子空间(linear subspace)

        线性子空间(又称向量子空间,简称子空间)是线性空间中部分向量组成的线性空间。设W是域P上的线性空间V的一个非空子集合,若对于V中的加法及域P与V的纯量乘法构成域P上的一个线性空间,则称W为V的线性子空间.

        定义 设W是域P上的线性空间V的一个非空子集合,若对于V中的加法及域P与V的纯量乘法构成域P上的一个线性空间,则称W为V的线性子空间(或向量子空间),或简称子空间。 [2] 

注:1.V的非空子集W是子空间的充分必要条件是:

                 (1)子集合W的任意两个向量α与β之和α+β仍是W中的向量;

                 (2)域P的任一数k与子集合W的任意一个向量α的积kα仍是W中的向量。

       2.在线性空间中,由单个的零向量所组成的子集合是一个线性子空间,它叫做零子空间

       3.线性空间V自身与单独一个零向量都是V的线性子空间。这两个特殊的子空间称为V的平凡子空间;除平凡子空间外的线性子空间称为V的非平凡子空间

1.子空间的交

       线性子空间的交一定是线性子空间。令W1与W2是两个线性子空间,那么子空间的交可定义为W= W1∩W2=(x|x belong to W1 且 x belong to W2) 。若这些子空间公共的唯一向量为零向量,i.e.W={0},则称子空间W1、W2无交连(disjoint)。

2.子空间的并

       线性子空间的并不一定是线性子空间,直观的理解为两个集合的并,不满足加法的封闭性。只是单纯把每个元素累积起来。

exp:L1=(3,1,0,0,0)(0,2,1,0,0)   L2=(1,1,2,0,0) (0,2,1,0,0)

      则L1∪L2={ (3,1,0,0,0),(0,2,1,0,0) ,(1,1,2,0,0) ,(0,2,1,0,0) }

3.子空间的和

       线性子空间的和是由各个子空间的一组线性无关的基向量所构成一个空间,是一个线性子空间。其定义可为W=(x1+x2|x1 belong to W1 and x2 belong to W2)称之为W1与W2的和,记为W1+W2。

        在子空间的和运算中,满足交换律与结合律。

       交换律: W1+W2=W2+W1;

       结合律:  (W1+W2)+W3 = W1+(W2+W3);

       引理:同时可以推导出线性空间维数的关系有

                                              dim W1+dim W2 = dim ( W1+W2 ) +dim(W1∩W2)

exp:假设L1=(3,1,0,0,0)(0,2,1,0,0)   L2=(1,1,2,0,0) (0,2,1,0,0)

       则L1+L2为三维空间,其中子空间的交为一维空间.

       求解方法:把所有子空间的组合所构成的矩阵化为标准阶梯型即可求出线性无关的基向量.

4.子空间的直和

        直和的定义:V的两个子空间W1与W2,如果对a属于W1+W2有 a=a1+a2(a1 belong to W1,a2 belong to W2)是唯一的,则称W1+W2为W1与W2的直和,记W1圈加W2.

        由此可以推出,当W1+W2为W1与W2的直和时,则有dim(W1∩W2) = 0;

        故:dim W1+dim W2 = dim ( W1+W2 )

5.子空间的补空间

        设W是线性空间V的一个线性子空间,那么存在一个子空间U,使得

                                                             V = W 圈加 U

那么称U为W的补子空间。

6.子空间的正交

        若U,W为欧式空间V的线性子空间,对于任意的x属于U与y属于W,都有

                                                             (x,y)=0

则称U与W正交,记U⊥W.

        如果一个向量x与W的任意一个向量正交,则称x与W正交,记x⊥W.

        正交空间的交集为0,且正交空间的和为直和。

参考:张祥朝 线性子空间的交、和、直和[0]复旦大学光科学与工程系 2013.5.19

           百度百科

### 回答1: 给定一个线性变换T: V → V,V是一个向量空间。定义T的不变空间为T的所有使得Tv = λv的向量v所张成的空间,其中λ是V中某个标量。 T的不变空间和分解意味着我们可以将V分解为T的不变空间和。 具体的步骤如下: 1. 找到T的所有不变空间。这些空间是由满足Tv = λv的向量v所张成的。 2. 确定每个不变空间维数。设T的不变空间为W1, W2, ..., Wn,维数分别为k1, k2, ..., kn。 3. 如果 W1 + W2 + ... + Wn = V,且 W1 ∩ W2 ∩ ... ∩ Wn = {0},那么V是W1, W2, ..., Wn的和分解。 T的不变空间和分解相应的矩阵分解如下: 1. 对于每个不变空间Wi,选择Wi的一组基b1i, b2i, ..., bki。 2. 将每个不变空间的基扩展为V的一组基,记为B = {b1, b2, ..., bm}。其中b1, b2, ..., bn是Wi的基,而b(n+1), b(n+2), ..., bm是V中不属于Wi的基。 3. 构建一个矩阵P,其列向量是基向量b1, b2, ..., bm。 4. 构建一个对角矩阵D,对角线上的元素为每个不变空间Wi的维数ki。 5. 构建一个矩阵A,使得A = P^-1TDP。 6. 这样,A的对角元素对应于D的对角元素,矩阵A的不变空间对应于T的不变空间。 需要注意的是,T的不变空间和分解和相应的矩阵分解有时候并不一定存在或唯一。这取决于线性变换T的性质和向量空间V的结构。 ### 回答2: 给定一个线性变换T:V→V,其中V是一个n维线性空间。T的不变空间是指在T下保持不变的V的空间。 我们知道,对于每个不变空间W,W中的向量在T下的像也在W中。因此,我们可以将V分解成T的所有不变空间和。 具体地说,假设T有k个不变空间W1, W2, ..., Wk。那么,V可以通过以下和分解表示: V = W1 ⊕ W2 ⊕ ... ⊕ Wk 其中,⊕表示和运算,表示所有空间的和。 此外,相应的矩阵分解是通过选择每个不变空间的基向量,并将它们排列为一个矩阵,使得这个矩阵的行向量是各个不变空间的基向量。在选择基向量时,可以选择每个不变空间的一组基,这样可以更好地描述这些空间。 假设W1的基向量是{v11, v12, ..., v1r1},W2的基向量是{v21, v22, ..., v2r2},以此类推,Wk的基向量是{vk1, vk2, ..., vkrk}。那么,我们可以将这些基向量排列为一个矩阵P,形成一个n×(r1+r2+...+rk)的矩阵。 在这个表示中,线性变换T对应的矩阵表示可以表示为一个分块矩阵: [T] = [A11 A12 ... A1k] [A21 A22 ... A2k] ... [Ak1 Ak2 ... Akk] 其中,每个Ai j是一个rj×rj的方阵,表示T在Wi的作用下对Wi的限制。这些方阵中的每一个都是一个不变空间的基向量之间的线性关系。 总之,T的不变空间和分解将V分解为每个不变空间的和,相应的矩阵分解是一个矩阵P和一个分块矩阵[Ai j]。这些分解可以帮助我们更好地理解和描述线性变换T的性质和行为。 ### 回答3: 在线性代数中,一个矩阵的“不变空间”是指在矩阵变换下保持不变的向量空间。对于一个矩阵A,它的不变空间由满足 A·v = v 的向量 v 组成。其中,v 称为 A 的特征向量。 现在考虑一个矩阵 A 的不变空间和分解。对于一个特征值 λ,其对应的特征向量 v 所生成的空间被称为特征空间,并表示为 E(λ)。如果一个矩阵有 n 个不同的特征值 λ1, λ2, ..., λn,并且它们对应的特征空间分别为 E(λ1), E(λ2), ..., E(λn),那么矩阵 A 的不变空间和分解就可以表示为: R^n = E(λ1) ⊕ E(λ2) ⊕ ... ⊕ E(λn) 其中,符号 ⊕ 表示和运算。这意味着任何一个向量 v 可以唯一地表示为几个特征空间和。这种分解能够将整个 n 维空间分解为多个相互正交空间。 同时,矩阵 A 的相应的矩阵分解可以通过特征向量和特征值得到。假设矩阵 A 有 n 个线性无关的特征向量 v1, v2, ..., vn,并且它们对应的特征值分别为 λ1, λ2, ..., λn。我们可以将这些特征向量按列排列形成一个矩阵 P,而相应的特征值则按对角线排列形成一个对角矩阵 D。则有: A = P·D·P^(-1) 这个矩阵分解被称为特征值分解(或谱分解)。它表示将矩阵 A 用其特征向量和特征值对角矩阵来表示。其中,矩阵 P 通常是可逆的,所以我们可以通过 P 的逆矩阵 P^(-1) 来实现变换的逆过程。最后,特征值分解帮助我们了解矩阵 A 在不变空间下的性质。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值