矩阵相乘的规则
1.唯独匹配
m*n的矩阵可以与n*p的矩阵相乘,结果是一个m*p的矩阵。
2.结果矩阵的元素
结果矩阵的每一个元素是通过第一个矩阵的行与第二个矩阵的列相乘,并将它们相加得到的
量子比特
量子比特是量子计算机中处理信息的基本单位。
物理量子比特是一个两级量子力学系统。一个量子比特可以被表示为二维复Hilbert空间
为了表示两个或多个量子比特,可以将Hilbert空间张量积在一起,以表示量子比特的组合状态。
每个量子比特可能处于两个基本状态之一:|0>(零态)或|1>(一态)。这些基本状态通常用向量表示,其中:可以用向量表示状态|0>= , |1>=
量子算子
在基于门的量子计算机中,用来改变量子比特状态的算子是酉矩阵,因此是可逆的。其中有一些是对合的(即它们是自身的逆)。可测量的值,或者叫可观测量,是一个厄米算子;因此,量子计算机中的测量会输出实数值。算子也称“门”。
有些量子是对合门,即它们与它们自身的逆运算相同。例如,Hadamard门是一个对合门,因为应用两次Hadamard门会恢复原始的量子态。
共轭转置
共轭转置是矩阵的一个运算,通常用符号(称为“dagger/达格”符号)表示。在共轭转置中,矩阵的每个元素取其复共轭并进行转置。复共轭意味着对于复数,取其共轭意味着保持实部不变,但将虚部复数取负值。
具体来说,如果有一个复数矩阵A= ,其中a,b,c,d,e,f,g都是复数,那么它的共轭转置A=
复共轭转置在量子力学和量子计算中非常常见,因为它用来定义厄米算子和酉矩阵。
在量子力学中,我们将状态标识为向量,将算子表示为矩阵,并且使用Dirac符号来代替传统的线性代数符号。
每个计算基态的向量表示是对应单量子比特的张量积
在量子计算中,计算基态是一个量子比特可能处于的状态。
当多个量子比特组合在一起时,它们的联合状态可以通过计算张量积(也成为叉积或kronecker积)来表示。如果你有n个量子比特,每个比特都有两个基本状态,那么它们的联合状态可以表示为一个2^n维的向量。
例如,对于两个量子比特,如果第一个比特处于|0>,第二个比特处于|1>,那么它们的联合状态可以表示为:
|0> |1>=|01>
量子电路
如同经典计算机一样,量子计算机也是由逻辑门搭建起来
经典电路:与门,或门,非门
量子电路:X门,Z门,H门
量子门
与经典的逻辑门类似,量子门用来改变量子比特的状态
量子门是用来操作量子比特的一种数学操作符。这些操作符可以用矩阵来表示,而这些矩阵被称为酉矩阵。
表示量子门的矩阵是酉矩阵,称矩阵U是酉矩阵:满足UU=I(U乘以它的共轭转置等于恒等矩阵I,它保持量子态的模长不变)
其中U是U的共轭转置,I是恒等矩阵,酉矩阵具有保距性
量子门U作用在量子态|>上,演化到量子态|'> : |'> = U|>
这表示应用量子门U后,量子态从|>转移到了|‘>。由于U是酉矩阵,它保持内积不变,因此保持量子态的模长不变。
酉矩阵描述了可逆的量子操作。