python数据分析之获取并简单清洗(一)

基本函数

append()函数

append()函数用于在列表末尾添加新的对象。

语法

list.append(obj)

  • 其中:
    list:列表对象;
    obj:添加到列表末尾的对象。
    注意:append()函数无返回值,但是会修改原本的列表。

sort_values()函数

pandas中的sort_values()函数原理类似于SQL中的order by,可以将数据集依照某个字段中的数据进行排序,该函数即可根据指定列数据也可根据指定行的数据排序。

语法·

DataFrame.sort_values(by=‘##’,axis=0,ascending=True,
inplace=False,na_position=‘last’)

参数解释

在这里插入图片描述

rename()函数

语法

使用到rename()函数,修改DataFrame的个别列名或者索引。

set_index()函数

语法

DataFrame.set_index(keys, drop=True, append=False, inplace=False, verify_integrity=False)

参数解释

keys:列标签或列标签/数组列表,需要设置为索引的列

drop:默认为True,删除用作新索引的列

append:是否将列附加到现有索引,默认为False。

inplace:输入布尔值,表示当前操作是否对原数据生效,默认为False。

verify_integrity:检查新索引的副本。否则,请将检查推迟到必要时进行。将其设置为false将提高该方法的性能,默认为false

数据获取

  • 数据接口拼接
  • 设置code表和接受数据的对象
  • for循环传code
  • 写入函数


import  tushare as ts
import pandas as pd

token = 'youtoken'
pro =ts.pro_api(token)
#设置code列表和接受数据对面data_list
code_list = ['600015.SH','600016.SH','600036.SH']
data_list = []
#循环输入code并开始获取数据
for code in code_list:
        data_1 = pro.daily(ts_code= code,start_date = '20120101',end_date = '20201231')[['trade_date','close']]
    	data_1['trade_date'] = pd.to_datetime(data_1['trade_date'])#交易时间列’trade_date’ 不是时间类型,而且也不是索引,需要先进行转化。将‘trade_date’转化为时间序列,
    	data_1.sort_values(by='trade_date', inplace=True)#指定第一列的排序,默认ascending参数默认为True,按升序排列
    	data_1.rename(columns={'close': code}, inplace=True)#利用rename 函数和结合字典将行从新命名为code
    	data_1.set_index('trade_date', inplace=True)#将trade_date 设置为索引
    	data_list.append(data_1)#第一个获取的列表末尾加入新获取的数据
data_1 = pd.concat(data_list, axis=1)
print(data_1.head())

上述数据就是根据上面的代码实现
后续补充中…

收益率计算

作图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值