基本函数
append()函数
append()函数用于在列表末尾添加新的对象。
语法
list.append(obj)
- 其中:
list:列表对象;
obj:添加到列表末尾的对象。
注意:append()函数无返回值,但是会修改原本的列表。
sort_values()函数
pandas中的sort_values()函数原理类似于SQL中的order by,可以将数据集依照某个字段中的数据进行排序,该函数即可根据指定列数据也可根据指定行的数据排序。
语法·
DataFrame.sort_values(by=‘##’,axis=0,ascending=True,
inplace=False,na_position=‘last’)
参数解释
rename()函数
语法
使用到rename()函数,修改DataFrame的个别列名或者索引。
set_index()函数
语法
DataFrame.set_index(keys, drop=True, append=False, inplace=False, verify_integrity=False)
参数解释
keys:列标签或列标签/数组列表,需要设置为索引的列
drop:默认为True,删除用作新索引的列
append:是否将列附加到现有索引,默认为False。
inplace:输入布尔值,表示当前操作是否对原数据生效,默认为False。
verify_integrity:检查新索引的副本。否则,请将检查推迟到必要时进行。将其设置为false将提高该方法的性能,默认为false
数据获取
- 数据接口拼接
- 设置code表和接受数据的对象
- for循环传code
- 写入函数
import tushare as ts
import pandas as pd
token = 'youtoken'
pro =ts.pro_api(token)
#设置code列表和接受数据对面data_list
code_list = ['600015.SH','600016.SH','600036.SH']
data_list = []
#循环输入code并开始获取数据
for code in code_list:
data_1 = pro.daily(ts_code= code,start_date = '20120101',end_date = '20201231')[['trade_date','close']]
data_1['trade_date'] = pd.to_datetime(data_1['trade_date'])#交易时间列’trade_date’ 不是时间类型,而且也不是索引,需要先进行转化。将‘trade_date’转化为时间序列,
data_1.sort_values(by='trade_date', inplace=True)#指定第一列的排序,默认ascending参数默认为True,按升序排列
data_1.rename(columns={'close': code}, inplace=True)#利用rename 函数和结合字典将行从新命名为code
data_1.set_index('trade_date', inplace=True)#将trade_date 设置为索引
data_list.append(data_1)#第一个获取的列表末尾加入新获取的数据
data_1 = pd.concat(data_list, axis=1)
print(data_1.head())
后续补充中…