深度学习框架比较分析及各种版本mnist识别

      现在市场上流行的深度学习框架很多,常用的有tensorflow, keras,MXNet, Torch, Caffe, Theano等几种,通过对比分析可以得到:

框架开发语言优劣及难易程度
tensorflowc++/cuda/python资料全,灵活性好,适应性广,但前期上手难
kerasc++/cuda/python高度分装,简单易行,上手快
mxnetc++/cuda高度分装,简单易行,上手快
torchc/cuda/lua高度分装,简单易行,上手快
caffec++/cuda速度快,资料相对较全,但是环境配置比较麻烦。
theanoc++/cuda/python比较旧的一个框架,资料相对比较老

利用各种框架构建的mnist数据识别:

1.基于tensorflow的

》利用tf.layers来构建网络

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import numpy as np
import matplotlib.pyplot as plt

tf.set_random_seed(1)
np.random.seed(1)

BATCH_SIZE = 50
LR = 0.001              # learning rate

mnist = input_data.read_data_sets('./mnist', one_hot=True)  # they has been normalized to range (0,1)
test_x = mnist.test.images[:2000]
test_y = mnist.test.labels[:2000]

# plot one example
print(mnist.train.images.shape)     # (55000, 28 * 28)
print(mnist.train.labels.shape)   # (55000, 10)
plt.imshow(mnist.train.images[0].reshape((28, 28)), cmap='gray')
plt.title('%i' % np.argmax(mnist.train.labels[0])); plt.show()

tf_x = tf.placeholder(tf.float32, [None, 28*28]) / 255.
image = tf.reshape(tf_x, [-1, 28, 28, 1])              # (batch, height, width, channel)
tf_y = tf.placeholder(tf.int32, [None, 10])            # input y

# CNN
conv1 = tf.layers.conv2d(   # shape (28, 28, 1)
    inputs=image,
    filters=16,
    kernel_size=5,
    strides=1,
    padding='same',
    activation=tf.nn.relu
)           # -> (28, 28, 16)
pool1 = tf.layers.max_pooling2d(
    conv1,
    pool_size=2,
    strides=2,
)           # -> (14, 14, 16)
conv2 = tf.layers.conv2d(pool1, 32, 5, 1, 'same', activation=tf.nn.relu)    # -> (14, 14, 32)
pool2 = tf.layers.max_pooling2d(conv2, 2, 2)    # -> (7, 7, 32)
flat = tf.reshape(pool2, [-1, 7*7*32])          # -> (7*7*32, )
output = tf.layers.dense(flat, 10)              # output layer

loss = tf.losses.softmax_cross_entropy(onehot_labels=tf_y, logits=output)           # compute cost
train_op = tf.train.AdamOptimizer(LR).minimize(loss)

accuracy = tf.metrics.accuracy(          # return (acc, update_op), and create 2 local variables
    labels=tf.argmax(tf_y, axis=1), predictions=tf.argmax(output, axis=1),)[1]

sess = tf.Session()
init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) # the local var is for accuracy_op
sess.run(init_op)     # initialize var in graph

# following function (plot_with_labels) is for visualization, can be ignored if not interested
from matplotlib import cm
try: from sklearn.manifold import TSNE; HAS_SK = True
except: HAS_SK = False; print('\nPlease install sklearn for layer visualization\n')
def plot_with_labels(lowDWeights, labels):
    plt.cla(); X, Y = lowDWeights[:, 0], lowDWeights[:, 1]
    for x, y, s in zip(X, Y, labels):
        c = cm.rainbow(int(255 * s / 9)); plt.text(x, y, s, backgroundcolor=c, fontsize=9)
    plt.xlim(X.min(), X.max()); plt.ylim(Y.min(), Y.max()); plt.title('Visualize last layer'); plt.show(); plt.pause(0.01)

plt.ion()
for step in range(600):
    b_x, b_y = mnist.train.next_batch(BATCH_SIZE)
    _, loss_ = sess.run([train_op, loss], {tf_x: b_x, tf_y: b_y})
    if step % 50 == 0:
        accuracy_, flat_representation = sess.run([accuracy, flat], {tf_x: test_x, tf_y: test_y})
        print('Step:', step, '| train loss: %.4f' % loss_, '| test accuracy: %.2f' % accuracy_)

        if HAS_SK:
            # Visualization of trained flatten layer (T-SNE)
            tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000); plot_only = 500
            low_dim_embs = tsne.fit_transform(flat_representation[:plot_only, :])
            labels = np.argmax(test_y, axis=1)[:plot_only]; plot_with_labels(low_dim_embs, labels)
plt.ioff()

# print 10 predictions from test data
test_output = sess.run(output, {tf_x: test_x[:10]})
pred_y = np.argmax(test_output, 1)
print(pred_y, 'prediction number')
print(np.argmax(test_y[:10], 1), 'real number')

》利用tf.nn来构建网络

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import os ###这一步在不同框架还有区别?神奇

# ###setting gpu
try:
    os.environ['CUDA_VISIBLE_DEVICES']='0,1'
    print("running on gpu")
    os.environ['TF_FORCE_GPU_ALLOW_GROWTH']='true'
except:
    print("running the code on cpu")
    pass

mnist = input_data.read_data_sets('MNIST_data',one_hot=True)
##定义权值
def weight_variable(shape):
    initial = tf.truncated_normal(shape,stddev=0.1)
    return tf.Variable(initial)
##定义偏置
def bias_variable(shape):
    initial = tf.constant(0.1,shape=shape)
    return tf.Variable(initial)
##定义卷积
def conv2d(x,W):
    #srtide[1,x_movement,y_,movement,1]步长参数说明
    return tf.nn.conv2d(x,W,strides = [1,1,1,1],padding='SAME')
    #x为输入,W为卷积参数,[5,5,1,32]表示5*5的卷积核,1个channel,32个卷积核。strides表示模板移动步长,SAME和VALID两种形式的padding,valid抽取出来的是在原始图片直接抽取,结果比原始图像小,same为原始图像补零后抽取,结果与原始图像大小相同。
##定义pooling
def max_pool_2x2(x):
    #ksize   strides
    return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
##定义计算准确度的功能
def compute_accuracy(v_xs,v_ys):
    global prediction
    y_pre = sess.run(prediction,feed_dict={xs:v_xs, keep_prob:1})
    correct_prediction = tf.equal(tf.argmax(y_pre,1),tf.argmax(v_ys,1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
    result = sess.run(accuracy,feed_dict={xs:v_xs,ys:v_ys,keep_prob:1})
    return result
##输入
xs = tf.placeholder(tf.float32,[None,784])#28*28
ys = tf.placeholder(tf.float32,[None,10])#10个输出
keep_prob = tf.placeholder(tf.float32)
x_image = tf.reshape(xs,[-1,28,28,1])
#-1代表样本数不定,28*28大小的图片,1表示通道数
#print(x_image.shape)
##卷积层conv1
W_conv1 = weight_variable([5,5,1,32])#第一层卷积:卷积核大小5x5,1个颜色通道,32个卷积核
b_conv1 = bias_variable([32])#第一层偏置
h_conv1 = tf.nn.relu(conv2d(x_image,W_conv1)+b_conv1)#第一层输出:输出的非线性处理28x28x32
h_pool1 = max_pool_2x2(h_conv1)#输出为14x14x32
##卷积层conv2
W_conv2 = weight_variable([5,5,32,64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1,W_conv2)+b_conv2)
h_pool2 = max_pool_2x2(h_conv2)#输出为7x7x64
##全连接层,隐含层的节点个数为1024
W_fc1 = weight_variable([7*7*64,1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])
#将2D图像变成1D数据[n_samples,7,7,64]->>[n_samples,7*7*64]
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1)#非线性激活函数
h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob)#防止过拟合
##softmaxe层
W_fc2 = weight_variable([1024,10])
b_fc2 = bias_variable([10])
prediction = tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2)+b_fc2)
#输出误差loss,算法cross_entropy+softmax就可以生成分类算法
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys*tf.log(prediction),reduction_indices=[1]))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

#gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.5)
#sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))

session_config = tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True))
sess = tf.Session(config=session_config)

#sess = tf.Session()
#重要的初始化变量操作
sess.run(tf.initialize_all_variables())
saver = tf.train.Saver()

for i in range(1000):
    batch_xs,batch_ys = mnist.train.next_batch(64)#从下载好的数据集提取100个数据,mini_batch
    sess.run(train_step,feed_dict={xs:batch_xs,ys:batch_ys,keep_prob:0.5})
    if i%50 == 0:
        print(compute_accuracy(mnist.test.images, mnist.test.labels))
#        saver.restore(sess,"save_net.ckpt")
 

》基于eager模式构建

import tensorflow as tf
import tensorflow.contrib.eager as tfe
tfe.enable_eager_execution()
from tensorflow.examples.tutorials.mnist import input_data


class MNIST:
    def __init__(self):
        self.mnist = input_data.read_data_sets("data/MNIST_data/", one_hot=True)
        self.train_ds = tf.data.Dataset.from_tensor_slices((self.mnist.train.images, self.mnist.train.labels))\
        .map(lambda x, y: (x, tf.cast(y,tf.float32))).shuffle(buffer_size=1000).batch(100)
        self.W = tf.get_variable(name="W", shape=(784, 10))
        self.b = tf.get_variable(name="b", shape=(10, ))

    def softmax_model(self,image_batch):
        model_output = tf.nn.softmax(tf.matmul(image_batch, self.W) + self.b)
        return model_output

    def cross_entropy(self, model_output,label_batch):
        loss = tf.reduce_mean(tf.reduce_sum(label_batch * tf.log(model_output), axis=[1]))
        return loss

    @tfe.implicit_value_and_gradients
    def cal_gradient(self, image_batch, label_batch):
        return self.cross_entropy(self.softmax_model(image_batch), label_batch)

    def train(self):
        optimizer = tf.train.GradientDescentOptimizer(0.5)

        for step,(image_batch, label_batch) in enumerate(tfe.Iterator(self.train_ds)):
            loss, grads_and_vars = self.cal_gradient(image_batch, label_batch)
            optimizer.apply_gradients(grads_and_vars)
            print("step:{ } loss:{ }".format(step, loss.numpy()))

    def evaluate(self):
        model_test_output = self.softmax_model(self.mnist.test.images)
        model_test_label = self.mnist.test.labels
        correct_prediction = tf.equal(tf.argmax(model_test_output, 1), tf.argmax(model_test_label, 1))
        self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        print("test accuracy = { }".format(self.accuracy.numpy()))

if __name__ == '__main__':
    mnist_model = MNIST()
    mnist_model.train()
    mnist_model.evaluate()

2.基于keras

import numpy as np 
from keras.datasets import mnist

from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers.convolutional import Conv2D, MaxPooling2D

(X_train, y_train), (X_test, y_test) = mnist.load_data()  # 获得MNIST数据集

print(X_train[0].shape)
print(y_train[0])

X_train = X_train.reshape(X_train.shape[0], 28, 28, 1).astype('float32')
X_test = X_test.reshape(X_test.shape[0], 28, 28, 1).astype('float32')

# 归一化
X_train /= 255
X_test /= 255

# 独热编码
def tran_y(y):
    y_ohe = np.zeros(10)
    y_ohe[y] = 1
    return y_ohe

# 把标签进行独热编码
y_train_ohe = np.array([tran_y(y_train[i]) for i in range(len(y_train))])
y_test_ohe = np.array([tran_y(y_test[i]) for i in range(len(y_test))])
# 创建序列模型
model = Sequential()
# 添加卷积层,64个滤波器,卷积核大小3x3,平移步长1,填充方式:补零,设定输入层维度,激活函数relu
model.add(Conv2D(filters=64, kernel_size=(3, 3), strides=(1, 1), padding='same', input_shape=(28, 28, 1), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))   # 池化层,取2x2格子中的最大值
model.add(Dropout(0.5))                     # dropout层,概率0.5,防止过拟合,提高泛化能力

model.add(Conv2D(128, kernel_size=(3, 3), strides=(1, 1), padding='same', activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.5))

model.add(Conv2D(256, kernel_size=(3, 3), strides=(1, 1), padding='same', activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.5))
# 把当前层节点展平
model.add(Flatten())
# 添加全连接层
model.add(Dense(128, activation='relu'))
model.add(Dense(64, activation='relu'))
model.add(Dense(32, activation='relu'))
model.add(Dense(10, activation='softmax')) # 10个神经元,对应输出层
# 编译模型,指定损失函数(一般分类问题的损失函数都采用交叉熵),优化器,度量
model.compile(loss='categorical_crossentropy', optimizer= 'adagrand', metrics=['accuracy'])
# 放入批量样本进行,训练模型
model.fit(X_train, y_train_ohe, validation_data=(X_test, y_test_ohe), epochs=20, batch_size=128)
# 在测试集上评估模型的准确度
scores = model.evaluate(X_test, y_test_ohe, verbose=0)

keras的后端可以是tensorflow或theano,默认是tensorflow,想要修改的话可参考链接https://blog.csdn.net/a214704/article/details/86304854

3、基于mxnet的

》基于symbol的

#encoding:utf-8

import logging       # 对于输出每一轮的训练信息很重要
logging.getLogger().setLevel(logging.INFO)

import os
import mxnet as mx
from mxnet import nd

# 准备数据,并放到NDArrayIter迭代器中
mnist = mx.test_utils.get_mnist()

mx.random.seed(42)

batch_size = 100
train_iter = mx.io.NDArrayIter(mnist["train_data"], mnist["train_label"], batch_size, shuffle=True)
val_iter = mx.io.NDArrayIter(mnist["test_data"], mnist["test_label"], batch_size)

# 定义网络
data = mx.sym.var('data')
conv1 = mx.sym.Convolution(data=data, kernel=(3,3), num_filter=20)
relu1 = mx.sym.Activation(data=conv1, act_type="relu")
pool1 = mx.sym.Pooling(data=relu1, pool_type="max", kernel=(2,2), stride=(2,2))

conv2 = mx.sym.Convolution(data=pool1, kernel=(3,3), num_filter=20)
relu2 = mx.sym.Activation(data=conv2, act_type="relu")
pool2 = mx.sym.Pooling(data=relu2, pool_type="max", kernel=(2,2), stride=(2,2))

flatten = mx.sym.flatten(data=pool2)
fc1 = mx.sym.FullyConnected(data=flatten, num_hidden=500)
relu3 = mx.sym.Activation(data=fc1, act_type="relu")

fc2 = mx.sym.FullyConnected(data=relu3, num_hidden=10)

cnn_symbol = mx.sym.SoftmaxOutput(data=fc2, name="softmax")

# 定义module
ctx = mx.gpu() if mx.test_utils.list_gpus() else mx.cpu()
cnn_model = mx.mod.Module(symbol=cnn_symbol, context=ctx)

# 训练
cnn_model.fit(train_iter, eval_data=val_iter, optimizer='sgd', optimizer_params={'learning_rate':0.1},
              batch_end_callback = mx.callback.Speedometer(batch_size, 100),   # 100个batch以后输出一次训练信息
              eval_metric='acc', 
              num_epoch=10)  # 训练10个epochs,也就是训练集数据走10遍

# 测试
test_iter = mx.io.NDArrayIter(mnist['test_data'], None, batch_size)
prob = cnn_model.predict(test_iter)   # 测试1

test_iter = mx.io.NDArrayIter(mnist['test_data'], mnist['test_label'], batch_size)
acc = mx.metric.Accuracy()
cnn_model.score(test_iter, acc)   # 测试2
print(acc)
assert acc.get()[1] > 0.98, "Achieved accuracy (%f) is lower than expected (0.98)" % acc.get()[1]

》基于gluon的

import gluonbook as gb
from mxnet import autograd,nd,init,gluon
from mxnet.gluon import loss as gloss,data as gdata,nn,utils as gutils
import mxnet as mx
net = nn.Sequential()

with net.name_scope():
    net.add(
        nn.Conv2D(channels=32, kernel_size=5, activation='relu'),
        nn.MaxPool2D(pool_size=2, strides=2),
        nn.Flatten(),
        nn.Dense(128, activation='sigmoid'),
        nn.Dense(10, activation='sigmoid')
    )

lr = 0.5
batch_size=256

try:
    ctx = mx.gpu()
    _ = nd.zeros((1,), ctx=ctx)
except:
    ctx = mx.cpu()

net.initialize(init=init.Xavier(), ctx=ctx)

train_data, test_data = gb.load_data_fashion_mnist(batch_size)
trainer = gluon.Trainer(net.collect_params(),'sgd',{'learning_rate' : lr})
loss = gloss.SoftmaxCrossEntropyLoss()
num_epochs = 30

def train(train_data, test_data, net, loss, trainer,num_epochs):
    for epoch in range(num_epochs):
        total_loss = 0
        for x,y in train_data:
            with autograd.record():
                x = x.as_in_context(ctx)
                y = y.as_in_context(ctx)
                y_hat=net(x)
                l = loss(y_hat,y)
            l.backward()
            total_loss += l
            trainer.step(batch_size)
        mx.nd.waitall()
        print("Epoch [{}]: Loss {}".format(epoch, total_loss.sum().asnumpy()[0]/(batch_size*len(train_data))))

if __name__ == '__main__':
    gb.train(train_data,test_data,net,loss,trainer,ctx,num_epochs)

4、基于pytorch的

​# 运用CNN分析MNIST手写数字分类
 
import torch 
import numpy as np
from torch.utils.data import DataLoader
from torchvision.datasets import mnist
from torch import  nn
from torch.autograd import Variable
from torch import  optim
from torchvision import transforms
 
# 定义CNN
class CNN(nn.Module):
    def __init__(self):
        super(CNN,self).__init__()
        
        self.layer1 = nn.Sequential(
                nn.Conv2d(1,16,kernel_size=3), # 16, 26 ,26
                nn.BatchNorm2d(16),
                nn.ReLU(inplace=True))
        
        self.layer2 = nn.Sequential(
                nn.Conv2d(16,32,kernel_size=3),# 32, 24, 24
                nn.BatchNorm2d(32),
                nn.ReLU(inplace=True),
                nn.MaxPool2d(kernel_size=2,stride=2)) # 32, 12,12     (24-2) /2 +1
        
        self.layer3 = nn.Sequential(
                nn.Conv2d(32,64,kernel_size=3), # 64,10,10
                nn.BatchNorm2d(64),
                nn.ReLU(inplace=True))
        
        self.layer4 = nn.Sequential(
                nn.Conv2d(64,128,kernel_size=3),  # 128,8,8
                nn.BatchNorm2d(128),
                nn.ReLU(inplace=True),
                nn.MaxPool2d(kernel_size=2,stride=2))  # 128, 4,4
        
        self.fc = nn.Sequential(
                nn.Linear(128 * 4 * 4,1024),
                nn.ReLU(inplace=True),
                nn.Linear(1024,128),
                nn.ReLU(inplace=True),
                nn.Linear(128,10))
        
    def forward(self,x):
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        x = x.view(x.size(0),-1)
        x = self.fc(x)
        
        return x
 
 

# 预处理=>将各种预处理组合在一起
data_tf = transforms.Compose(
                [transforms.ToTensor(),
                 transforms.Normalize([0.5],[0.5])])
 
train_set = mnist.MNIST('./data',train=True,transform=data_tf,download=True)
test_set = mnist.MNIST('./data',train=False,transform=data_tf,download=True)
 
train_data = DataLoader(train_set,batch_size=64,shuffle=True)
test_data = DataLoader(test_set,batch_size=128,shuffle=False)
 
net = CNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(),1e-1)
 
nums_epoch = 20
 
# 开始训练
losses =[]
acces = []
eval_losses = []
eval_acces = []
 
for epoch in range(nums_epoch):
    train_loss = 0
    train_acc = 0
    net = net.train()
    for img , label in train_data:
        #img = img.reshape(img.size(0),-1) 
        img = Variable(img)
        label = Variable(label)
        
        # 前向传播
        out = net(img)
        loss = criterion(out,label)
        # 反向传播
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        
        # 记录误差
        train_loss += loss.item()
        # 计算分类的准确率
        _,pred = out.max(1)
        num_correct = (pred == label).sum().item()
        acc = num_correct / img.shape[0]
       
        train_acc += acc
        
    losses.append(train_loss / len(train_data))
    acces.append(train_acc / len(train_data))
    
    eval_loss = 0
    eval_acc = 0
    # 测试集不训练
    for img , label in test_data:
        #img = img.reshape(img.size(0),-1)
        img = Variable(img)
        label = Variable(label)
        
        out = net(img)
        
        loss = criterion(out,label)
        
        # 记录误差
        eval_loss += loss.item()
        
        _ , pred = out.max(1)
        num_correct = (pred==label).sum().item()
        acc = num_correct / img.shape[0]
        
        eval_acc += acc
    eval_losses.append(eval_loss / len(test_data))
    eval_acces.append(eval_acc / len(test_data))
    
    print('Epoch {} Train Loss {} Train  Accuracy {} Teat Loss {} Test Accuracy {}'.format(
        epoch+1, train_loss / len(train_data),train_acc / len(train_data), eval_loss / len(test_data), eval_acc / len(test_data)))
 
 

5.基于caffe

官网的详细教程:Training LeNet on MNIST with Caffe

6.基于theano

这里可以参考官网http://www.deeplearning.net/software/theano/tutorial/index.html,或者将keras后端修改成theano即可。

补:各神经网络框架之间相互转换:

ONNX(Open Neural Network Exchange,开放神经网络交换)是一种针对机器学习所设计的开放式的文件格式,用于存储训练好的模型。它使得不同的人工智能框架(如Pytorch, MXNet)可以采用相同格式存储模型数据并交互。 ONNX的规范及代码主要由微软,亚马逊 ,Facebook 和 IBM 等公司共同开发,以开放源代码的方式托管在Github上。目前官方支持加载ONNX模型并进行推理的深度学习框架有: Caffe2, PyTorch, MXNet,ML.NET,TensorRT 和 Microsoft CNTK,并且 TensorFlow 也非官方的支持ONNX。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值