MNIST数字识别问题之二——神经网络模型训练及不同模型结果对比

1.TensorFlow训练神经网络

在神经网络的结构上,深度学习一方面需要使用激活函数实现神经网络模型的去线性化,另一方面需要使用一个或多个隐藏层使得神经网络结构更深,以解决复杂问题。在训练神经网络时,可以使用带指数衰减的学习率设置、使用正则化来避免过度拟合,以及使用滑动平均模型来使得最终模型更加健壮。以下代码给出一个在MNIST数据集上实现这些功能的完整TensorFlow程序。

#coding=utf-8
import tensorflow as tf 
from tensorflow.examples.tutorials.mnist import input_data

#MNIST数据集相关的常数
INPUT_NODE=784	#输入层的节点数。对于MNIST数据集,这个就等于图片的像素数
OUTPUT_NODE=10	#输出层的节点数。这个等于类别的数目。因为在MNIST数据集中
				#需要区分的是0~910个数字,所以这里输出层节点数为10

#配置神经网络的参数
LAYER1_NODE=500	#隐藏层节点数。这里使用只有一个隐藏层的网络结构作为样例
				#这个隐藏层有500个节点
BATCH_SIZE=100	#一个训练batch中的训练数据个数。数字越小时,训练过程越接近
				#随机梯度下降;数字越大时,训练越接近梯度下降。
LEARNING_RATE_BASE=0.8		#基础的学习率
LEARNING_RATE_DECAY=0.99	#学习率的衰减率
REGULARIZATION_RATE=0.0001	#描述模型复杂度的正则化项在损失函数中的系数
TRAINING_STEPS=30000		#训练轮数
MOVING_AVERAGE_DECAY=0.99	#滑动平均衰减率

#一个辅助函数,给定神经网络的输入和所有参数,计算神经网络的前向传播结果。
#在这里定义了一个使用ReLU激活函数的三层全连接神经网络。通过加入隐藏层实现了多层网络结构
#通过ReLU激活函数实现了去线性化。在这个函数中也支持传入用于计算参数平均值的类
#这样方便在测试时使用滑动平均模型
def inference(input_tensor,avg_class,weights1,biases1,weights2,biases2):
	#当没有提供滑动平均类时,直接使用参数当前的取值
	if avg_class==None:
		#计算隐藏层的前向传播结果,这里使用了ReLU激活函数
		layer1=tf.nn.relu(tf.matmul(input_tensor,weights1)+biases1)

		#计算输出层的前向传播结果。因为在计算损失函数时会一并计算softmax函数
		#所以这里不需要加入激活函数。而且不加入softmax不会影响预测结果。
		#因为预测时使用的是不同类别对应节点输出值的相对大小,有没有softmax层对最后分类结果的计算没有影响
		#于是在计算整个神经网络的前向传播时可以不加入最后的softmax层
		return tf.matmul(layer1,weights2)+biases2

	else:
		#首先使用avg_class.average函数来计算得出变量的滑动平均值
		#然后再计算相应的神经网络前向传播结果
		layer1=tf.nn.relu(tf.matmul(input_tensor,avg_class.average(weights1))+avg_class.average(biases1))
		return tf.matmul(layer1,avg_class.average(weights2))+avg_class.average(biases2)


#训练模型的过程
def train(mnist):
	x=tf.placeholder(tf.float32,[None,INPUT_NODE],name="x-input")
	y_=tf.placeholder(tf.float32,[None,OUTPUT_NODE],name="y-input")

	#生成隐藏层的参数
	weights1=tf.Variable(tf.truncated_normal([INPUT_NODE,LAYER1_NODE],stddev=0.1))
	biases1=tf.Variable(tf.constant(0.1,shape=[LAYER1_NODE]))
	#生成输出层的参数
	weights2=tf.Variable(tf.truncated_normal([LAYER1_NODE,OUTPUT_NODE],stddev=0.1))
	biases2=tf.Variable(tf.constant(0.1,shape=[OUTPUT_NODE]))

	#计算在当前参数下神经网络前向传播的结果。这里给出的用于计算滑动平均的类为None
	#所以函数不会使用参数的滑动平均值
	y=inference(x,None,weights1,biases1,weights2,biases2)

	#定义储存训练轮数的变量
	#这个变量不需要计算滑动平均值
	#所以这里指定这个变量为不可训练变量(trainable=False)
	#在使用TensorFlow训练神经网络时,一般会将代表训练轮数的变量指定为不可训练的参数
	global_step=tf.Variable(0,trainable=False)

	#给定滑动平均衰减率和训练轮数的变量,初始化滑动平均类
	#给定训练轮数的变量可以加快训练早期变量的更新速度
	variable_averages=tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY,global_step)

	#在所有代表神经网络参数的变量上使用滑动平均。其他辅助变量(如global_step)就不需要了
	#tf.trainable_variables返回的就是图上集合GraphKeys,TRAINABLE_VARIABLES中的元素。
	#这个集合的元素就是所有没有指定trainable=False的参数
	variables_averages_op=variable_averages.apply(tf.trainable_variables())

	#计算使用了滑动平均后的前向传播结果
	#滑动平均不会改变变量本身的取值,而是会维护一个影子变量来记录其滑动平均值
	#所以当需要使用这个滑动平均值时,需要明确调用average函数
	average_y=inference(x,variable_averages,weights1,biases1,weights2,biases2)

	#计算交叉熵作为刻画预测值和真实值之间差距的损失函数
	#这里使用了TensorFlow中提供的sparse_softmax_cross_entropy_with_logits函数来计算交叉熵
	#当分类问题只有一个正确答案时,可以使用这个函数来加速交叉熵的计算
	#MNIST问题的图片中只包含了0~9中的一个数字,所以可以使用这个函数来计算交叉熵损失
	#这个函数的第一个参数是神经网络不包括softmax层的前向传播结果,第二个是训练数据的正确答案
	#因为标准答案是一个长度为10的一维数组,而该函数需要提供的是一个正确答案的数字
	#所以需要使用tf.argmax函数来得到正确答案对应的类别编号
	cross_entropy=tf.nn.sparse_softmax_cross_entropy_with_logits(y,tf.argmax(y_,1))
	#计算在当前batch中所有样例的交叉熵平均值
	cross_entropy_mean=tf.reduce_mean(cross_entropy)

	#计算L2正则化损失函数
	regularizer=tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)
	#计算模型的正则化损失。一般只计算神经网络边上权重的正则化损失,而不使用偏置项。
	regularization=regularizer(weights1)+regularizer(weights2)
	#总损失等于交叉熵损失和正则化损失的和
	loss=cross_entropy_mean+regularization
	#设置指数衰减的学习率
	#各参数意义:随着迭代的进行更新变量时使用的基础学习率,学习率在此基础上递减;当前迭代轮数;过完所有训练数据需要的迭代次数;学习率衰减速度
	learning_rate=tf.train.exponential_decay(LEARNING_RATE_BASE,gloabl_step,mnist.train.num_examples/BATCH_SIZE,LEARNING_RATE_DECAY)

	#使用tf.train.GradientDescentOptimizer优化算法来优化损失函数
	#注意这里的损失函数包含了交叉熵损失和L2正则化损失
	train_step=tf.train.GradientDescentOptimizer(learning_rate).minimize(loss,global_step=global_step)

	#在训练神经网络模型时,每过一遍数据既需要通过反向传播来更新神经网络中的参数,又要更新每一个参数的滑动平均值。
	#为了一次完成多个操作,TensorFlow提供了tf.control_dependencies和tf.group两种机制。
	#下面两行程序和train_op=tf.group(train_step,variables_averages_op)是等价的
	with tf.control_dependencies([train_step,variables_averages_op]):
		train_op=tf.no_op(name="train")

	#检验使用了滑动平均模型的神经网络前向传播结果是否正确。tf.argmax(average_y,1)
	#计算每一个样例的预测答案。其中average_y是一个batch_size*10的二维数组
	#每一行表示一个样例的前向传播结果。tf.argmax的第二个参数“1”表示选取最大值得操作仅在第一个维度进行
	#也就是说,只在每一行选取最大值对应的下标。于是得到的结果是一个长度为batch的一维数组
	#这个一维数组中的值就表示了每一个样例对应的数字识别结果
	#tf.equal判断两个张量的每一维是否相等,如果相等返回True,否则返回False
	correct_prediction=tf.equal(tf.argmax(average_y,1),tf.argmax(y_,1))
	#这个运算首先将一个布尔型的数值转换为实数型,然后计算平均值
	#这个平均值就是模型在这一组数据上的正确率
	accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))

	#初始化会话并开始训练过程
	with tf.Session() as sess:
		tf.initialize_variables().run()
		#准备验证数据。一般在神经网络的训练过程中会通过验证数据来大致判断停止的条件和评判训练的效果
		validate_feed={x:mnist.validation.images,y_:mnist.validation.labels}
		#准备测试数据。在真实的应用中,这部分数据在训练时是不可见的
		#这个数据只是作为模型优劣的最后评价标准
		test_feed={x:mnist.test.images,y_:mnist.test.labels}

		#迭代地训练神经网络
		for i in range(TRAINING_STEPS):
			#每1000轮输出一次在验证数据集上的测试结果
			if i % 1000==0:
				#计算滑动平均模型在验证数据上的结果。因为MNIST数据集比较小,所以一次
				#可以处理所有的验证数据。为了计算方便,本样例程序没有将验证数据划分为更小的batch
				#当神经网络模型比较复杂或者验证数据较大时,太大的batch会导致计算时间过长甚至发生内存溢出的错误
				validate_acc=sess.run(accuracy,feed_dict=validate_feed)
				print("After %d training step(s),validation accuracy using average model is %g"%(i,validate_acc))

			#产生这一轮使用的一个batch的训练数据,并进行训练过程
			xs,ys=mnist.train.next_batch(BATCH_SIZE)
			sess.run(train_op,feed_dict={x:xs,y_:ys})

		#在训练结束之后,有测试数据上检测神经网络模型最终正确率
		test_acc=sess.run(accuracy,feed_dict=test_feed)
		print("After %d training step(s),test accuracy using average model is %g"%(TRAINING_STEPS,test_acc))

#主程序入口
def main(argv=None):
	#声明处理MNIST数据集的类,这个类在初始化时会自动下载数据
	mnist=input_data.read_data_sets("/tmp/data",one_hot=True)
	train(mnist)

#TensorFlow提供的一个主程序入口,tf.app.run会调用上面定义的main函数
if __name__=='__main__':
	tf.app.run()

在训练初期,随着训练的进行,模型在验证数据集上的表现会越来越好。当模型在验证数据集上的表现开始波动时,说明模型已经接近极小值了,所以迭代也就可以结束了。

2.使用验证数据集判断模型效果

为了评测神经网络模型在不同参数下的效果,一般会从训练数据中抽取一部分作为验证数据。除了使用验证数据集,还可以采用交叉验证(cross validation)的方式来验证模型效果。但因为神经网络训练时间本身就比较长,采用cross validation会花费大量时间。所以在海量数据的情况下,一般会更多地采用验证数据集的形式来评测模型效果。
在第一节中给出的代码中加入以下代码,就可以得到每1000轮迭代后,使用了滑动平均的模型在验证数据和测试数据上的正确率。

#计算滑动平均模型在测试数据和验证数据上的正确率
validate_acc=sess.run(accuracy.feed_dict=validate_feed)
test_acc=sess.run(accuracy,feed_dict=test_feed)
#输出正确率信息
print("After %d training step(s),validation accuracy using average model is %g,test accuracy using average model is %g"%(i,validate_acc,test_acc))

本实验说明了通过神经网络在验证数据集上的效果来选取模型的参数是一个可行的方案。当然,以上结论仅针对MNIST数据集,对于其他问题,还需哟具体问题具体分析。不同问题的数据分布不一样,如果验证数据分布不能很好地代表测试数据分布,那么模型在这两个数据集上的表现有可能不一样。所以验证数据的选取方法是非常重要的,一般来说选取的验证数据分布越接近测试数据分布,模型在验证数据上的表现越可以提现模型在测试数据上的表现。

3.不同模型的比较

这里验证典型的5种优化方法。在神经网络结构的设计上,需要使用激活函数和多层隐藏层。在神经网络优化时,可以使用指数衰减的学习率、加入正则化的损失函数及滑动平均模型。下图给出在相同网络参数下,使用不同优化方法,经过30000轮训练迭代后,得到的最终模型的正确率,以验证每一项优化方法的效果:
在这里插入图片描述
总的来说,通过MNIST数据集有效验证了激活函数、隐藏层可以给模型的效果带来质的飞跃。由于MNIST问题本身相对简单,滑动平均模型、指数衰减的学习率和正则化损失对最终正确率的提升效果不明显。但通过进一步分析实验的结果,可以得出这些优化方法确实可以解决神经网络优化过程中的问题。当需要解决的问题和使用的神经网络模型更加复杂时,这些优化方法将更有可能对训练效果产生更大影响。

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值