没有激光雷达设备,只有无人机也可以生成真地形(DEM)和等高线(CAD)

0 背景介绍

很多没有激光雷达设备的用户,也想生成地形数据,这时我们可以想到目前各个行业都普遍在使用的设备----无人机。

伴随着无人机倾斜摄影技术的普及和发展,不仅让我们能够快速获取城市三维模型,还能提供高精度DSM和DOM数据。进而通过DSM转换成DEM数据已经不成问题,毕竟去除DSM数据里面的建筑、植被等人工地物,就可以得到DEM。

点云数据一般用于构建DEM数据、三维建模、农林普查、土方计算以及地质灾害监测等。较为常见的是用激光雷达点云数据提取地形,殊不知,用点云大师基于照片的航测成果也能构建DEM数据!

1. DEM结果展示

一般需要通过2-3个专业软件多步操作将点云数据处理成DEM和等高线数据,但我只需要1个!先看看我处理后的结果:

施工工地处理后的地形效果 

 原始数据效果

 2.操作过程

2.1 无人机生成点云数据

使用无人机航测成果生成点云数据

2.1.1 大疆智图构建点云

在大疆智图中可以用无人机采集的倾斜摄影照片数据构建las点云数据。

新建任务 → 可见光 →导入照片 → 配置参数 →选择生成点云 →勾选LAS格式

 

 

 2.1.2 CC(ContextCapture/Smart3D)构建点云

在Context Capture软件中加载倾斜摄影照片数据,先进行空三计算,在提交项目生产,在生产配置参数过程中:

·     目的:三维点云

·     格式:LAS

·     空间参考系统:选用正确的投影信息

 

 2.2 点云大师剔除地表、树木构建DEM

倾斜摄影结果 + 图新地球可达到没有激光雷达的航测成果,也能快速提取地面点构建DEM。

图新地球·桌面版实验室模块中包括强大的点云大师功能,可提供大量点云查看、分类和提取工具。包括三维视图、点云赋色、自动地面点检测和分类和点大小控制;地形表面生成,以及更多。

 2.2.1 点云大师导入点云数据

用图新地球的点云大师模块导入las格式数据。(PS:点云大师提供为点云数据赋予不同颜色信息功能,可以更直观的展示真实世界)

 2.2.2 点云大师提取地面点

不同点可能落在不同的对象表面,提取落在地面上的点,过滤掉没有落在地面上的点,将两者用不同颜色进行区分,进而就能得到地面的真正高度。并且可以单独显隐某个分类的点。

 

 

 2.2.3 生成DEM

点云数据完成地面点提取后,可以得到精准的地面点高程信息,通过这些高程值生成数字高程模型(DEM)。

 2.2.4 点云大师生成等高线

通过点云生成了地形后,再基于地形提取高精度的等高线。

 

 

整体操作下来,我们只用到了图新地球·桌面端这一个软件,就可以将倾斜摄影数据生成DEM数据。通过点云数据提取的高精度地形(DEM)和等高线数据,都可以通过图新地球导出,并随时应用到你的其他工作环节中。

### 无人机生成DEM的具体步骤 #### 准备阶段 为了确保最终生成高质量的DEM,在准备阶段需收集并整理好所需的影像资料其他辅助数据。通常情况下,这些影像是由无人机携带相机按照预定航线拍摄而来。 #### 数据导入与预处理 将获取到的无人机影像文件导入至Metashape软件中[^1]。在此过程中,还需确认所有必要的元数据一同被正确读取,特别是地理位置信息(POS)。如果缺少此类信息,则可通过自定义比例尺的方法来弥补这一不足之处[^4]。 #### 构建三维模型 - **对齐照片**:使不同视角下的多张片能够相互匹配,形成统一的空间坐标体系。 - **建立密集点云**:基于成功配准的照片集构建出详细的三维点位集合。这一步骤对于后续地形表面重建至关重要。 一旦完成了密集点云建设,即可进一步加工得到更精细结构化的表示形式——即三角化网格或直接进入DEM生 成环节。 #### DEM生产 在具备了足够的几何基础之上,可以选择不同的方法来计算高度值从而完成DEM 的创建。具体来说,在 Metashape 中支持多种途径实现这一点,包括但不限于从点云、深度或是现有网格提取海拔数值。 #### 质量控制与优化 初步形成的DEM往往还需要经历一轮细致的质量审查,以剔除异常值噪声干扰项。必要时可借助其他专业工具如GlobalMapper来进行补充性的编辑调整工作,例如针对特定区域实施人工干预式的修补操作后再重导出为标准格式的数据文件[^2]。 #### 结果验证与应用 最后,应当仔细检验所生产的DEM是否满足预期精度要求,并考虑将其应用于实际场景之中。用户可以在正交视模式下直观查看重建效果以便于评估整体质量状况[^3]。 ```python import metashape doc = metashape.Document() chunk = doc.addChunk() # 导入照片 photos_path = "path/to/your/drone_photos" photo_files = list(metashape.FileFilters.Images()) for file in photo_files: chunk.addPhotos([file]) # 对齐照片 chunk.matchPhotos(downscale=1, generic_preselection=True) # 建立密集点云 chunk.buildDenseCloud(max_neighbors=80, quality="ultra_quality") # 创建DEM dem = chunk.rasterize(chunk.dense_cloud, resolution=0.5) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值