pandas.DataFrame.apply方法详解

本文详细解析了pandas DataFrame的apply方法,包括参数func、axis、broadcast、raw、reduce和result_type的作用,并给出了示例说明如何应用在数据处理中。
摘要由CSDN通过智能技术生成

1.方法的参数解释

官方解释:https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.apply.html

DataFrame.apply(self, func, axis=0, broadcast=None, raw=False, reduce=None, result_type=None, args=(), **kwds)[source]
对DataFrame的行或列应用一个方法

传递给该函数的对象是Series对象,对象的索引是DataFrame的索引(axis = 0)或DataFrame的列(axis = 1)。返回类型:默认情况下(result_type = None),则最终的返回类型是根据提供的方法的返回类型来推断的;否则,它取决于result_type参数。

参数:    
func : 方法名称;需要应用在每行或每列的方法名

axis : 行或列
    有两种值:
    整数:0或1,其中0表示列,1表示行;
    字符串:‘index’或‘columns’,其中‘index’表示列;‘columns’表示行

broadcast : 布尔型, 可选
    仅与聚合函数有关࿱

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值