论文地址:Fully Convolutional Networks for Semantic Segmentation
参考网址:
- Fully Convolutional Networks for semantic Segmentation(深度学习经典论文翻译)(一般,很多不准确)
- Fully Convolutional Networks for Semantic Segmentation(FCN)论文翻译
- 论文精读及分析:Fully Convolutional Networks for Semantic Segmentation
- 论文笔记《Fully Convolutional Networks for Semantic Segmentation》(这篇不错,对文章进行了分析)
论文创新点:
- 提出一种新的全卷积网络,从而将网络输出的概率值上升为预测图,利用反卷积更好的恢复特征图尺寸;
- 适应任意尺寸的输入,均可得到同尺寸的输出预测图;
- FCN成为了语义分割领域中里程碑式的网络结构
问题 | 解决办法 |
1 、CNN的输出为一个特定的概率值 | 利用端到端的训练方式,将输出转换为图片 |
2 、CNN使用全连接层会丢失图像的二维信息 | 提出FCN网络,用卷积层代替全连接层,保留二维信息 |
3 、上采样会丢失大量细节信息 | 通过跳跃连接,将浅层特征与深层特征相融合 |
缺点:一些较小的物体识别不出来。
备注:由于精力问题,没有精读文章,而是参考了一些机构课程,基本上与论文中的内容差不多,至于一些细节之类的还需要细读论文。
论文中在最后介绍了语义分割常用的评价指标:
代码实现:
第一步,用tensorflow将原文代码复现;
第二步,修改使用自己的数据集(有一些问题:训练损失为nan,捣鼓了半天,实在是不清楚【代码写错了,修改之后可以使用】)