torch stack() \ totch.meshgrid()

这篇博客介绍了PyTorch中torch.stack和torch.cat两个函数在维度拼接上的区别。torch.stack会在指定维度上增加一个新维度进行拼接,而torch.cat则在同一维度上合并张量。通过示例展示了它们在处理二维网格axes1和axes2时的效果,帮助理解这两个函数的使用场景。
摘要由CSDN通过智能技术生成

torch.stack() 指定维度拼接,会增加一个新维度
torch.cat() 指定维度拼接,在该维度上合并,如 两个1 合并为 2

import torch
x = torch.arange(4)
x2 = torch.arange(3,7)
print(x,x2)
"""  
tensor([0, 1, 2, 3]) tensor([3, 4, 5, 6])
"""
axes1,axes2 =torch.meshgrid(x,x2)#输入为一维序列,输出两个二维网格,常用来生成坐标
print(axes1.shape,axes2.shape)
"torch.Size([4, 4]) torch.Size([4, 4])"
print(axes1,axes2)
"""  
tensor([[0, 0, 0, 0],
        [1, 1, 1, 1],
        [2, 2, 2, 2],
        [3, 3, 3, 3]]) tensor([[3, 4, 5, 6],
        [3, 4, 5, 6],
        [3, 4, 5, 6],
        [3, 4, 5, 6]])
"""
torch.stack((axes1,axes2))#按照某个维度拼接,输入序列shape必须一致,默认按照dim0

"""   
shape:[2,4,4]
tensor([[[0, 0, 0, 0],
         [1, 1, 1, 1],
         [2, 2, 2, 2],
         [3, 3, 3, 3]],

        [[3, 4, 5, 6],
         [3, 4, 5, 6],
         [3, 4, 5, 6],
         [3, 4, 5, 6]]])
"""
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值