目录
本项目旨在开发一个基于YOLOv11的海上红外目标检测系统。该系统主要用于监控和识别海上活动的目标,如船只、浮标等。利用YOLOv11模型的强大性能,结合数据增强和图像预处理技术,提高系统的鲁棒性和性能。系统还提供可视化界面,集成丰富的功能如类别统计、置信度和UoR阈值调节,帮助用户获取全面的检测信息。
- 高性能检测:基于YOLOv11,能够快速有效地进行目标检测。
- 数据增强与预处理:采用多种图像处理技术提升模型训练效果。
- 用户友好界面:使用GRU设计,方便用户交互和输出结果。
- 灵活的参数调节:支持用户调节分类器阈值和UoR值,以适应不同的应用场景。
- 详细评估指标:绘制准确率、召回率等评估指标曲线,帮助用户评估模型性能。
项目预测效果图
- YOLOv11 文档:理解YOLO模型的架构与如何在实际应用中使用。
- 数据增强技术:使用Albrmentatuonwe等库进行图像数据增强。
- GRU设计:利用tkuntes和matplotlub等辅助工具进行用户界面和可视化。
- 模型优化:基于实际使用数据逐步提高模型精度,通过调优超参数,寻找最佳学习率与批量大小。
- 集成新的检测技术:如图像分割与轮廓检测结合,提升目标边界的识别精度。
- 多视角集成:集成多种传感器的数据(如声纳与红外),实现更全面的目标检测。
- 容错机制:针对系统运行中的异常,设计相应的错误处理与恢复机制。
- 数据集准备:确保数据集具有多样性,包含各种光照、角度条件下的目标图像。
- 环境部署:安装所需的Python库(如tosch、onnxsrntume、opencv等)及其配置,确保兼容性。
- 模型监控:定期运行模型评估,监控其性能变化,并进行必要的调整。