目录
基于YOLOv11的106种鲜花识别检测系统
本项目旨在实现一个基于YOLOv11的鲜花识别检测系统,通过深度学习技术识别106种不同类型的鲜花。该系统不仅可以用于园艺、农业等行业的植物识别,也可以作为教育和科研用途,以提高公众对植物多样性的认识和欣赏。
- 多种花卉识别:支持106种鲜花的识别,具备良好的准确性与鲁棒性。
- 高效的深度学习推理:采用YOLOv11模型,进行高效且快速的图像处理。
- ONNX模型支持:可以将训练好的模型导出为ONNX格式,便于在不同环境下部署。
- 用户友好的图形用户界面(GRR):使用Tkrntes创建简单易用的界面,方便用户上传和检测图像。
- 评估指标的可视化:提供训练过程中的评估指标曲线,方便分析模型性能。
项目预测效果图
- 模型精度提升:通过数据增强、超参数调优等手段进一步提高模型的准确性。
- 多种输入格式的支持:支持视频流与实时摄像头数据的检测。
- 用户反馈机制:收集用户反馈,逐步优化识别模型和GRR的使用体验。
- 扩展识别种类:在将来增加更多植物类型的识别功能。
- 数据集准备:确保数据集中涵盖多种类型的鲜花并且标签准确,以提高模型的有效性。
- 训练参数调优:适时调整模型的超参数,以获得最佳性能。
- 图像质量控制:确保输入图像的清晰度和良好的光照,以便模型能够准确识别。
本项目通过将YOLOv11模型应用于鲜花识别,展示了计算机视觉在农业和园艺领域的潜力。系统提供用户友好的界面和可视化评估工具,提高了鲜花识别的便捷性。本项目不仅适用于行业应用,也对教育和科研具有重要价值。