原题链接: https://www.acwing.com/problem/content/179/
题目描述
给定一张N*M的地图,地图中有1个男孩,1个女孩和2个鬼。
字符“.”表示道路,字符“X”表示墙,字符“M”表示男孩的位置,字符“G”表示女孩的位置,字符“Z”表示鬼的位置。
男孩每秒可以移动3个单位距离,女孩每秒可以移动1个单位距离,男孩和女孩只能朝上下左右四个方向移动。
每个鬼占据的区域每秒可以向四周扩张2个单位距离,并且无视墙的阻挡,也就是在第k秒后所有与鬼的曼哈顿距离不超过2k的位置都会被鬼占领。
注意: 每一秒鬼会先扩展,扩展完毕后男孩和女孩才可以移动
求在不进入鬼的占领区的前提下,男孩和女孩能否会合,若能会合,求出最短会合时间。
输入格式
第一行包含整数T,表示共有T组测试用例。
每组测试用例第一行包含两个整数N和M,表示地图的尺寸。
接下来N行每行M个字符,用来描绘整张地图的状况。(注意:地图中一定有且仅有1个男孩,1个女孩和2个鬼)
输出格式
每个测试用例输出一个整数S,表示最短会合时间。
如果无法会合则输出-1。
每个结果占一行。
数据范围
1<n,m<800
输入样例:
3
5 6
XXXXXX
XZ…ZX
XXXXXX
M.G…
…
5 6
XXXXXX
XZZ…X
XXXXXX
M…
…G…
10 10
…
…X…
…M.X…X.
X…
.X…X.X.X.
…X
…XX…X.
X…G…X
…ZX.X…
…Z…X…X
输出样例:
1
1
-1
题解
这是一种BFS新的扩展方式,先把男孩每一步能扩展的区域标记为1,同时女孩每一步能扩展的区域标记为2,男孩与女孩能相遇的条件就是走过相同的区域。因为要维护每一步所有的区域。因此采用下面的方式
#include <iostream>
#include <queue>
#include <algorithm>
#include <cstring>
using namespace std;
typedef pair<int, int> PII;
const int N = 810;
char g[N][N];
int n, m;
int st[N][N];
PII ghost[2];
bool check(int x, int y, int step)
{
if (x < 0 || x >= n || y < 0 || y >= m || g[x][y] == 'X') return false;
for (int i = 0; i < 2; i ++ )
if (abs(x - ghost[i].first) + abs(y - ghost[i].second) <= step * 2)
return false;
return true;
}
int bfs()
{
memset(st, 0, sizeof st);
int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, -1, 0, 1};
PII boy, girl;
int cnt = 0;
for(int i = 0; i < n; i++)
{
for(int j = 0; j < m; j++)
{
if(g[i][j] == 'M') boy = {i, j};
else if(g[i][j] == 'G') girl = {i, j};
else if(g[i][j] == 'Z') ghost[cnt++] = {i, j};
}
}
queue<PII> qb, qg;
qb.push(boy);
qg.push(girl);
int step = 0;
while(qb.size() || qg.size())
{
step++;
for(int i = 0; i < 3; i++)
{
for(int j = 0, len = qb.size(); j < len; j++)
{
auto t = qb.front();
qb.pop();
int x = t.first, y = t.second;
if(!check(x, y, step)) continue; //这里要判断一下,因为第一次入队可能就不符合要求
for(int k = 0; k < 4; k++)
{
int a = x + dx[k], b = y + dy[k];
if(check(a, b, step))
{
if(st[a][b] == 2) return step;
if(!st[a][b])
{
st[a][b] = 1;
qb.push({a, b});
}
}
}
}
}
for(int i = 0; i < 1; i++)
{
for(int j = 0, len = qg.size(); j < len; j++)
{
auto t = qg.front();
qg.pop();
int x = t.first, y = t.second;
if(!check(x, y, step)) continue;
for(int k = 0; k < 4; k++)
{
int a = x + dx[k], b = y + dy[k];
if(check(a, b, step))
{
if(st[a][b] == 1) return step;
if(!st[a][b])
{
st[a][b] = 2;
qg.push({a, b});
}
}
}
}
}
}
return -1;
}
int main()
{
int T;
cin >> T;
while(T--)
{
cin >> n >> m;
for(int i = 0; i < n; i++) scanf("%s", g[i]);
printf("%d\n", bfs());
}
return 0;
}