AcWing 177. 噩梦(双向BFS)

本文介绍了一种使用BFS(广度优先搜索)算法来解决给定地图中男孩女孩如何在避免鬼魂区域的情况下找到最短会合时间的问题。博客详细解析了问题背景、题解步骤和关键代码实现,适合理解动态路径搜索在实际问题中的应用。
摘要由CSDN通过智能技术生成

原题链接: https://www.acwing.com/problem/content/179/

题目描述

给定一张N*M的地图,地图中有1个男孩,1个女孩和2个鬼。
字符“.”表示道路,字符“X”表示墙,字符“M”表示男孩的位置,字符“G”表示女孩的位置,字符“Z”表示鬼的位置。
男孩每秒可以移动3个单位距离,女孩每秒可以移动1个单位距离,男孩和女孩只能朝上下左右四个方向移动。
每个鬼占据的区域每秒可以向四周扩张2个单位距离,并且无视墙的阻挡,也就是在第k秒后所有与鬼的曼哈顿距离不超过2k的位置都会被鬼占领。
注意: 每一秒鬼会先扩展,扩展完毕后男孩和女孩才可以移动
求在不进入鬼的占领区的前提下,男孩和女孩能否会合,若能会合,求出最短会合时间。
输入格式
第一行包含整数T,表示共有T组测试用例。
每组测试用例第一行包含两个整数N和M,表示地图的尺寸。
接下来N行每行M个字符,用来描绘整张地图的状况。(注意:地图中一定有且仅有1个男孩,1个女孩和2个鬼)
输出格式
每个测试用例输出一个整数S,表示最短会合时间。
如果无法会合则输出-1。
每个结果占一行。
数据范围
1<n,m<800
输入样例:
3
5 6
XXXXXX
XZ…ZX
XXXXXX
M.G…

5 6
XXXXXX
XZZ…X
XXXXXX
M…
…G…
10 10

…X…
…M.X…X.
X…
.X…X.X.X.
…X
…XX…X.
X…G…X
…ZX.X…
…Z…X…X
输出样例:
1
1
-1

题解

这是一种BFS新的扩展方式,先把男孩每一步能扩展的区域标记为1,同时女孩每一步能扩展的区域标记为2,男孩与女孩能相遇的条件就是走过相同的区域。因为要维护每一步所有的区域。因此采用下面的方式

#include <iostream>
#include <queue>
#include <algorithm>
#include <cstring>

using namespace std;
typedef pair<int, int> PII;
const int N = 810;
char g[N][N];
int n, m;
int st[N][N];
PII ghost[2];

bool check(int x, int y, int step)
{
    if (x < 0 || x >= n || y < 0 || y >= m || g[x][y] == 'X') return false;

    for (int i = 0; i < 2; i ++ )
        if (abs(x - ghost[i].first) + abs(y - ghost[i].second) <= step * 2)
            return false;

    return true;
}

int bfs()
{
    memset(st, 0, sizeof st);
    int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, -1, 0, 1};
    
    PII boy, girl;
    int cnt = 0;
    for(int i = 0; i < n; i++)
    {
        for(int j = 0; j < m; j++)
        {
            if(g[i][j] == 'M') boy = {i, j};
            else if(g[i][j] == 'G') girl = {i, j};
            else if(g[i][j] == 'Z') ghost[cnt++] = {i, j};
        }
    }
    
    queue<PII> qb, qg;
    qb.push(boy);
    qg.push(girl);
    
    int step = 0;
    while(qb.size() || qg.size())
    {
        step++;
        for(int i = 0; i < 3; i++)
        {
            for(int j = 0, len = qb.size(); j < len; j++)
            {
                auto t = qb.front();
                qb.pop();
                int x = t.first, y = t.second;
                
                if(!check(x, y, step)) continue; //这里要判断一下,因为第一次入队可能就不符合要求
                
                for(int k = 0;  k < 4; k++)
                {
                    int a = x + dx[k], b = y + dy[k];
                    if(check(a, b, step))
                    {
                        if(st[a][b] == 2) return step;
                        if(!st[a][b])
                        {
                            st[a][b] = 1;
                            qb.push({a, b});
                        }
                    }
                }
                
            }
        }
        
        for(int i = 0; i < 1; i++)
        {
            for(int j = 0, len = qg.size(); j < len; j++)
            {
                auto t = qg.front();
                qg.pop();
                
                int x = t.first, y = t.second;
                
                if(!check(x, y, step)) continue;
                
                
                for(int k = 0;  k < 4; k++)
                {
                    int a = x + dx[k], b = y + dy[k];
                    
                    if(check(a, b, step))
                    {
                        if(st[a][b] == 1) return step;
                        
                        if(!st[a][b])
                        {
                            st[a][b] = 2;
                            qg.push({a, b});
                        }
                    }
                }
                
            }
        }
        
        
    }
    
    return -1;
}

int main()
{
    int T;
    cin >> T;
    while(T--)
    {
        cin >> n >> m;
        
        for(int i = 0; i < n; i++) scanf("%s", g[i]);
        
        
        printf("%d\n", bfs());
        
        
    }
    
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值