LLM三类评估方法介绍

1.人工评估

基于人工的评估方法通常需要邀请大量的志愿者或相关领域的专家对LLM的生成进行主观评估和打分。以专业领域知识评估为例,首先,需要收集不同领域专家根据该领域专业问题给出的答案作为参考,然后根据已有知识与LLM生成的输出,主观评估LLM专业领域知识的掌握程度。此外,人工评估还可以运用于评估生成内容与人类意愿高度相关的指标,例如语义一致性、逻辑合理性、文体风格等方面。

 2.自动评估

自动评估方法是指通过使用标准化的数据集和指标来对LLM进行自动化评估的方法。该类评估方法所采用的综合评测基准通常涵盖主流LLM评估任务,并且可以快速对比不同LLM在相同任务下的性能差距。

评测基准内容详细描述
Berkeley发布的MMLU(Massive Multitask Language Understanding)57个任务涵盖了数学、历史、计算机科学、法律等领域,通
过零样本和少样本设置来评估模型蕴含的知识
AI2提出的ARC(AI2 Reasoning Challenge)7787个来自不同科学领域的考试问题根据难易程度,划分为
2590个问题组成的ARC-Challenge和5197个问题的ARC-Easy

3.其他LLM评估

基于其他LLM的评估方法,该类方法通常设定一系列用来评估LLM综合性能的开放式问题集合,用以得到LLM的输出,并且采用现有先进的LLM作为评估者,对LLM的输出进行标注输出对比或打分以评估LLM的综合性能。

AlpacaEval 斯坦福大学基于AlpacaFarm数据集,来测试LLM遵循一般用户指令的能力的评估方法,以强大的LLM (如GPT-4、Claude或
ChatGPT)为自动评估器,以GPT-3.5为基准,将目标模型与GPT-3.5的回复进行比较,计算获胜率。
MT-Bench是一种基于多轮对话来评估LLM聊天机器人能力和用户偏好的评估方法。它是一个由80个多轮问题组成的基准测试集,旨在评估聊天机器人的对话和指令跟随能力。同样使用强大的LLM (如GPT-4、Claude或ChatGPT)作为评估器,将不同的聊天机器人的回复进行比较,并给出优劣判断。

### 对大型语言模型LLM)学术文献的分类方法 对大型语言模型LLM)相关的学术文献进行分类可以帮助研究者更好地理解和追踪该领域的进展。以下是几种可能的分类方式: #### 1. **按应用场景分类** 根据 LLM 的具体应用领域对其进行划分,常见的场景包括但不限于自然语言处理、对话系统、代码生成等。例如: - 自然语言理解与生成:涉及文本摘要、翻译、问答等领域[^1]。 - 法律与医学辅助工具开发:如将复杂信息转化为易懂语言的应用项目[^2]。 - 医疗健康领域专用模型评测:针对特定行业需求设计并优化的大规模预训练模型及其性能分析[^3]。 #### 2. **依据技术特性分组** 从技术角度出发考虑哪些方面可以作为区分标准,则可得到如下几类: - 架构创新:探讨新型网络结构的设计思路以及其相较于传统RNN/CNN的优势所在; - 参数效率改进措施:关于如何减少计算资源消耗同时保持甚至提升效果的研究成果汇总; - 长期记忆能力增强方案:旨在克服现有框架无法有效存储大量上下文信息这一局限性的探索方向[^4]; #### 3. **基于评价体系归档** 通过不同的评估维度来整理相关资料也是一种有效的办法 。比如使用HELM(Stanford University)这样的综合性平台所提供的多维指标体系来进行筛选和对比不同类型的产品表现情况。 ```python # 示例代码展示如何读取CSV文件中的数据以便进一步分析 import pandas as pd def load_data(file_path): df = pd.read_csv(file_path) return df.head() load_data('llm_papers.csv') ``` 上述三种主要类别并非互相排斥而是相辅相成的关系,在实际操作过程中可以根据个人兴趣或者工作需要灵活组合运用以上策略以达到最佳检索目的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值