ISP-镜头阴影校正(LSC)

概述

介绍

镜头阴影校正(Lens Shading Correction)是为了解决由于lens的光学特性,由于镜头对于光学折射不均匀导致的镜头周围出现阴影的情况。

shading可以细分为luma shading和color shading:

  • luma shading:
    由于Lens的光学特性,Sensor影像区的边缘区域接收的光强比中心小,所造成的中心和四角亮度不一致的现象。镜头本身就是一个凸透镜,由于凸透镜原理,中心的感光必然比周边多。如图所示:
    这里写图片描述

  • chrom/color shading:
    由于各种颜色的波长不同,经过了透镜的折射,折射的角度也不一样,因此会造成color shading的现象,这也是为什么太阳光经过三棱镜可以呈现彩虹的效果。如图所示:
    这里写图片描述

此外,还有CRA的原因会导致shading现象的出现,这里不再赘述,这里推荐《What’s CRA》这篇文章,详细讲述了由于镜头的CRA带来的shading。

影响

luma shading:会造成图像边角偏暗,就是所谓的暗角。
这里写图片描述

color shading:中心和四周颜色不一致,体现出来一般为中心或者四周偏色。如图所示:
这里写图片描述

校正

lens shading的校正是分别对于bayer的四个通道进行校正,每个通道的校正过程是相对独立的过程。

考虑到芯片设计的成本,因此一般情况下不会存储整幅图像的lut,目前主流的都是存储128*128个点的增益,利用双线性插值的方法计算每个pixel的增益。

算法

由于条件限制,图像仅用于算法验证,不做图像质量评判标准
这里写了一个shading的算法,将图像分为16x16的方块,求取每个交点的增益值,对平面进行四次方拟合,分别计算了luma shading 和 chrom shading,先计算出来一个lut用于存储,校正的世行通过对这个lut进行双线性插值得到每个pixel的值乘以原本像素点。

16x16的分块并非固定,可以对块的大小进行调整,比如中心块偏大,靠近边缘的方块变小,这些都是可以自定义的,本算法由于做演示使用,故不做其他功能。如图所示:
这里写图片描述

code

由于代码量较大,这里分别附上一部分算法

shading lut caculate:

function [image_r_gain, image_gr_gain, image_gb_gain, image_b_gain] = ...
isp_lsc_lut(image_r, image_gr, image_gb, image_b, side_num)
[height, width] = size(image_r);
side_y = floor(height/side_num);
side_x = floor(width/side_num);

% figure,imshow(image_r);
% hold on;
% for k=0:side_num
%     line_x = side_x * k;
%     line_y = side_y * k;
%     if(k==side_num && line_y ~= width) line_y = height;end
%     if(k==side_num && line_x ~= width) line_x = width;end
%     line([line_x,line_x],[0,height],'Color','red');
%     line([0,width], [line_y, line_y],'Color','red');
% %     line(Xd,Yd,'Color','red');
% end
% hold off

%% compress resolution
image_point = zeros(side_num,side_num);
for i = 0:side_num
    for j = 0:side_num
        x_clip = floor([j*side_x - side_x/2, j*side_x + side_x/2]);
        y_clip = floor([i*side_y - side_y/2, i*side_y + side_y/2]);
        if(i==side_num && y_clip(2) ~= height) y_clip(2) = height;end
        if(j==side_num && x_clip(2) ~= width) x_clip(2) = width;end
        x_clip(x_clip<1) = 1;x_clip(x_clip>width) = width;
        y_clip(y_clip<1) = 1;y_clip(y_clip>height) = height;
        data_r_in = image_r(y_clip(1):y_clip(2), x_clip(1):x_clip(2));
        image_r_point(i+1,j+1) = mean(mean(data_r_in));
        data_gr_in = image_gr(y_clip(1):y_clip(2), x_clip(1):x_clip(2));
        image_gr_point(i+1,j+1) = mean(mean(data_gr_in));
        data_gb_in = image_gb(y_clip(1):y_clip(2), x_clip(1):x_clip(2));
        image_gb_point(i+1,j+1) = mean(mean(data_gb_in));
        data_b_in = image_b(y_clip(1):y_clip(2), x_clip(1):x_clip(2));
        image_b_point(i+1,j+1) = mean(mean(data_b_in));
    end
end

% figure,imshow(uint8(image_r_point));
%% caculate lsc luma gain
for i = 1:side_num+1
    for j = 1:side_num+1
        image_r_luma_gain_point(i,j) = mean2(image_r_point(uint8(side_num/2)-1:uint8(side_num/2)+1, uint8(side_num/2)-1:uint8(side_num/2)+1)) / image_r_point(i,j);
        image_gr_luma_gain_point(i,j) = mean2(image_gr_point(uint8(side_num/2)-1:uint8(side_num/2)+1, uint8(side_num/2)-1:uint8(side_num/2)+1)) / image_gr_point(i,j);
        image_gb_luma_gain_point(i,j) = mean2(image_gb_point(uint8(side_num/2)-1:uint8(side_num/2)+1, uint8(side_num/2)-1:uint8(side_num/2)+1)) / image_gb_point(i,j);
        image_b_luma_gain_point(i,j) = mean2(image_b_point(uint8(side_num/2)-1:uint8(side_num/2)+1, uint8(side_num/2)-1:uint8(side_num/2)+1)) / image_b_point(i,j);
    end
end

bilinear interpolation:

image_r_luma_gain_reshape = reshape(image_r_luma_gain_point, [], 1);
image_gr_luma_gain_reshape = reshape(image_gr_luma_gain_point, [], 1);
image_gb_luma_gain_reshape = reshape(image_gb_luma_gain_point, [], 1);
image_b_luma_gain_reshape = reshape(image_b_luma_gain_point, [], 1);
for i = 1:17
    for j = 1:17
        x((i-1)*17+j) = i;
        y((i-1)*17+j) = j;
    end
end
x=x';
y=y';
% scatter3(x,y,image_r_luma_gain_reshape)
% hold on
Z=[ones(length(x),1),x,y,x.^2,x.*y,y.^2,x.^3,x.^2.*y,x.*y.^2,y.^3];
[x y]=meshgrid(1:17,1:17);
A=Z\image_r_luma_gain_reshape;
image_r_luma_gain=A(1)+A(2)*x+A(3)*y+A(4)*x.^2+A(5)*x.*y+A(6)*y.^2+A(7)*x.^3+A(8)*x.^2.*y+A(9)*x.*y.^2+A(10)*y.^3;
A=Z\image_gr_luma_gain_reshape;
image_gr_luma_gain=A(1)+A(2)*x+A(3)*y+A(4)*x.^2+A(5)*x.*y+A(6)*y.^2+A(7)*x.^3+A(8)*x.^2.*y+A(9)*x.*y.^2+A(10)*y.^3;
A=Z\image_gb_luma_gain_reshape;
image_gb_luma_gain=A(1)+A(2)*x+A(3)*y+A(4)*x.^2+A(5)*x.*y+A(6)*y.^2+A(7)*x.^3+A(8)*x.^2.*y+A(9)*x.*y.^2+A(10)*y.^3;
A=Z\image_b_luma_gain_reshape;
image_b_luma_gain=A(1)+A(2)*x+A(3)*y+A(4)*x.^2+A(5)*x.*y+A(6)*y.^2+A(7)*x.^3+A(8)*x.^2.*y+A(9)*x.*y.^2+A(10)*y.^3;
% surf(x,y,image_r_luma_gain)
% hold on 
% surf(x,y,image_r_luma_gain_point)


%% calulate lsc chroma gain
for i = 1:side_num+1
    for j = 1:side_num+1
        image_r_chroma_gain(i,j) = image_r_luma_gain(i,j) - image_r_luma_gain_point(i,j);
        image_gr_chroma_gain(i,j) = image_gr_luma_gain(i,j) - image_gr_luma_gain_point(i,j);
        image_gb_chroma_gain(i,j) = image_gb_luma_gain(i,j) - image_gb_luma_gain_point(i,j);
        image_b_chroma_gain(i,j) = image_b_luma_gain(i,j) - image_b_luma_gain_point(i,j);
    end
end
%% caculate lsc result gain
image_r_gain = image_r_luma_gain - image_r_chroma_gain;
image_gr_gain = image_gr_luma_gain - image_gr_chroma_gain;
image_gb_gain = image_gb_luma_gain - image_gb_chroma_gain;
image_b_gain = image_b_luma_gain - image_b_chroma_gain;



function image_gain_lut = lsc_data_gain_interpolation(image_gain, height, width, side_num)
side_y_ori = floor(height/side_num);
side_x_ori = floor(width/side_num);
k = 0;
l = 0;
[gain_height, gain_width] = size(image_gain);
for i = 1:gain_height-1
    for j = 1:gain_width-1
        data_gain_11 = image_gain(i, j);
        data_gain_12 = image_gain(i, j+1);
        data_gain_21 = image_gain(i+1, j);
        data_gain_22 = image_gain(i+1, j+1);
        if(j == gain_width-1 && ((j-1)*side_x + l) ~= width) 
            side_x = width - (j-1)*side_x_ori;
        else
            side_x = side_x_ori;
        end

        if(i == gain_width-1 && ((i-1)*side_y + k) ~= width)
            side_y = height - (i-1)*side_y_ori;
        else
            side_y = side_y_ori;
        end

        for k = 1:side_y
            for l = 1:side_x
                label_y1 = 1;
                label_x1 = 1;
                label_y2 = side_y;
                label_x2 = side_x;
                image_gain_lut((i-1)*side_y_ori + k, (j-1)*side_x_ori + l) = ...
                    data_gain_22/(label_x2-label_x1)/(label_y2-label_y1)* ...
                    (l - label_x1) * (k - label_y1) + ...
                    data_gain_21/(label_x2-label_x1)/(label_y2-label_y1)* ...
                    (label_x2 - l) * (k - label_y1) + ...
                    data_gain_12/(label_x2-label_x1)/(label_y2-label_y1)* ...
                    (l - label_x1) * (label_y2 - k) + ...
                    data_gain_11/(label_x2-label_x1)/(label_y2-label_y1)* ...
                    (label_x2 - l) * (label_y2 - k);
            end
        end

    end
end
end
效果展示:

实验条件有限,图片有水波纹,仅用于理解算法

original image:
这里写图片描述

luma shading

这里写图片描述
这里写图片描述
这里写图片描述

chroma shading
这里写图片描述
这里写图片描述
这里写图片描述

luma shading + chroma shading:
这里写图片描述
这里写图片描述
这里写图片描述

tuning

LSC的tuning一定要把校正图采集好,一般情况下raw图的G通道中心亮度在8bit的70%~80%之间,由于在不同色温情况下是经过插值的,因此需要校正多个光源,一般情况下TL84、D65、A光源下进行校正。将得到的LUT写入RAM中即可
注意:采集的raw图不要有filcker。

LSC强度一般是可调的,由于图像边角的增益会很大,因此在高倍gain下,可以把强度给降低,防止图像边角噪声压不住的情况。

由于各个平台不同,这里不做详细介绍,想到再补充。

### 回答1: color shading校正方法包括以下几种: 1. 使用校正板:将校正板放在拍摄场景中,拍摄一张照片,然后使用软件将校正板的颜色值作为参考,对其他照片进行校正。 2. 使用白平衡:在拍摄时使用白平衡功能,将白色或灰色物体作为参考,调整色温和色彩平衡。 3. 使用色彩校正工具:使用专业的色彩校正工具,对照片进行校正,调整色彩平衡和色温。 4. 手动调整:根据经验和感觉,手动调整照片的色彩平衡和色温,使其更加自然和真实。 以上是color shading校正方法,根据实际情况选择合适的方法进行校正。 ### 回答2: 所谓的color shading是指由于相机模组中传感器区域之间响应差异等因素导致的图像颜色渐变现象。在许多照片中,会出现颜色在照片周围的边缘降低的情况,使其外观不真实,色调不鲜明。为了消除这种不必要的鹅卵石细节,许多照片编辑软件都提供校正方法。 基于计算机图像处理的技术,颜色渐变的矫正可以通过为每个像素计算校正因子来实现。这个校正因子就是每个像素的颜色;多边形拟合算法可以随着图像的变化来调整位置,并修正前后相邻像素之间的显著颜色差异。这是一项技术密集型工作,通常需要密集的算法和复杂的编程来完成。 另外,一些更高端的图像编辑软件还提供了高级的颜色校正选项。这些选项可以更精细地控制渐变现象,对图像进行更精确的调整。例如, 像曲线调整器和色彩校正铃将直接修改像素颜色值,以逐渐改变整个图像的颜色而不影响对比度。 总体来说,调整方法的成功取决于所需的具体校正水平和是校正单个照片还是一整个图像序列。对于较小的调整,一般可以使用基本校正方法,但对于大规模照片处理项目,可能需要自定义算法和流程来确保结果的准确性。无论是使用基本或高级方法,都需要仔细的图像分析和处理,以确保校正效果良好。 ### 回答3: Color shading是指图像中不同位置和角度的像素所呈现出的颜色不均匀现象。它是由于相机镜头或传感器不完美造成的,严重时会影响图像质量。为了解决这个问题,需要对图像进行色彩校正。以下是一些常用的彩色遮挡矫正方法: 1.基于灰度卡比较法(Gray-Reference Comparison Method) 该方法从图像中选取灰度卡,将图像中不同位置的灰度值与灰度卡的灰度值进行比较,计算出颜色偏差,进而校正颜色。 2.基于灰度反转法(Gray Scale Inversion Method) 该方法将灰度图像取反,使颜色区分更明显,然后对反转后的图像进行颜色校正。 3.基于光谱反演法(Spectral Inversion Method) 该方法基于调整不同颜色的光谱分布比例,使得图像中不同位置的颜色更加均匀。 4.基于模型预测法(Model-Based Prediction Method) 该方法通过建立数学模型来预测图像中不同位置的颜色,从而校正颜色偏差。 这些校正方法各有优缺点,根据图像特性和应用需求选取合适的方法来进行彩色遮挡矫正。而在实际应用中,通常需要将多种方法相结合,以达到更好的效果。
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值