Image Generation

转自http://handong1587.github.io/deep_learning/2015/10/09/image-generation.html
Papers
Optimizing Neural Networks That Generate Images(2014. PhD thesis)

paper : http://www.cs.toronto.edu/~tijmen/tijmen_thesis.pdf
github: https://github.com/mrkulk/Unsupervised-Capsule-Network
Learning to Generate Chairs, Tables and Cars with Convolutional Networks

arxiv: http://arxiv.org/abs/1411.5928
code,demo&data: http://lmb.informatik.uni-freiburg.de/resources/software.php
raw data(3GB): http://www.di.ens.fr/willow/research/seeing3Dchairs/data/rendered_chairs.tar

Generative Adversarial Networks Generative Adversarial Nets

arxiv: http://arxiv.org/abs/1406.2661
paper: https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
github: https://github.com/goodfeli/adversarial
github: https://github.com/aleju/cat-generator
DRAW: A Recurrent Neural Network For Image Generation (Google DeepMind)

arxiv: http://arxiv.org/abs/1502.04623
github: https://github.com/vivanov879/draw
github(Theano): https://github.com/jbornschein/draw
github(Lasagne): https://github.com/skaae/lasagne-draw
youtube: https://www.youtube.com/watch?v=Zt-7MI9eKEo&hd=1
video: http://pan.baidu.com/s/1gd3W6Fh
Understanding and Implementing Deepmind’s DRAW Model

blog: http://evjang.com/articles/draw
github: https://github.com/ericjang/draw
Generative Image Modeling Using Spatial LSTMs

arxiv: http://arxiv.org/abs/1506.03478
github: https://github.com/lucastheis/ride/
Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks(NIPS 2015)

arxiv: http://arxiv.org/abs/1506.05751
code: http://soumith.ch/eyescream/
project page: http://soumith.ch/eyescream/
homepage: http://www.cs.nyu.edu/~denton/
Conditional generative adversarial nets for convolutional face generation

paper: http://www.foldl.me/uploads/2015/conditional-gans-face-generation/paper.pdf
blog: http://www.foldl.me/2015/conditional-gans-face-generation/
github: https://github.com/hans/adversarial
Generating Images from Captions with Attention

arxiv: http://arxiv.org/abs/1511.02793
github: https://github.com/emansim/text2image
demo: http://www.cs.toronto.edu/~emansim/cap2im.html
Attribute2Image: Conditional Image Generation from Visual Attributes

arxiv: http://arxiv.org/abs/1512.00570
Deep Visual Analogy-Making

paper: https://papers.nips.cc/paper/5845-deep-visual-analogy-making.pdf
code: http://www-personal.umich.edu/~reedscot/files/nips2015-analogy.tar.gz
data: http://www-personal.umich.edu/~reedscot/files/nips2015-analogy-data.tar.gz
slides: http://www-personal.umich.edu/~reedscot/files/nips2015-analogy-slides.pptx
Autoencoding beyond pixels using a learned similarity metric

arxiv: http://arxiv.org/abs/1512.09300
demo: http://algoalgebra.csa.iisc.ernet.in/deepimagine/
github: https://github.com/andersbll/autoencoding_beyond_pixels
video: http://video.weibo.com/show?fid=1034:f00b4e5a34e8c1ebe78ccd00da95f9e0
github: https://github.com/stitchfix/fauxtograph
Deep Visual Analogy-Making

paper: https://papers.nips.cc/paper/5845-deep-visual-analogy-making
github(Tensorflow): https://github.com/carpedm20/visual-analogy-tensorflow
slides: http://slideplayer.com/slide/9147672/
mirror: http://pan.baidu.com/s/1pKgrdnt
PixelRNN
Pixel Recurrent Neural Networks (Google DeepMind. ICML 2016 best paper)

arxiv: http://arxiv.org/abs/1601.06759
github: https://github.com/igul222/pixel_rnn
notes(by Hugo Larochelle): https://www.evernote.com/shard/s189/sh/fdf61a28-f4b6-491b-bef1-f3e148185b18/aba21367d1b3730d9334ed91d3250848
video(by Hugo Larochelle): https://www.periscope.tv/hugo_larochelle/1ypKdnMkjBnJW
Generating images with recurrent adversarial networks

arxiv: http://arxiv.org/abs/1602.05110
github: https://github.com/jiwoongim/GRAN
Generative Adversarial Text to Image Synthesis (ICML 2016)

arxiv: http://arxiv.org/abs/1605.05396
project page: https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/embeddings-for-image-classification/generative-adversarial-text-to-image-synthesis/
github: https://github.com/reedscot/icml2016
code+dataset: http://datasets.d2.mpi-inf.mpg.de/akata/cub_txt.tar.gz
PixelCNN
Conditional Image Generation with PixelCNN Decoders (Google DeepMind. PixelCNN 2.0)

arxiv: http://arxiv.org/abs/1606.05328
Inverting face embeddings with convolutional neural networks

arxiv: http://arxiv.org/abs/1606.04189
github: https://github.com/pavelgonchar/face-transfer-tensorflow
Deep Generative Model
Digit Fantasies by a Deep Generative Model

demo: http://www.dpkingma.com/sgvb_mnist_demo/demo.html
Conditional generative adversarial nets for convolutional face generation

paper: http://www.foldl.me/uploads/2015/conditional-gans-face-generation/paper.pdf
blog: http://www.foldl.me/2015/conditional-gans-face-generation/
github: https://github.com/hans/adversarial
Max-margin Deep Generative Models

arxiv: http://arxiv.org/abs/1504.06787
github: https://github.com/zhenxuan00/mmdgm
Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks (NIPS 2015)

arxiv: http://arxiv.org/abs/1506.05751
code: http://soumith.ch/eyescream/
project page: http://soumith.ch/eyescream/
homepage: http://www.cs.nyu.edu/~denton/
notes:http://colinraffel.com/wiki/deep_generative_image_models_using_a_laplacian_pyramid_of_adversarial_networks
Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks(CatGAN)

arxiv: http://arxiv.org/abs/1511.06390
Torch convolutional GAN: Generating Faces with Torch

blog: http://torch.ch/blog/2015/11/13/gan.html
github: https://github.com/skaae/torch-gan
DCGAN
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks (DCGAN)

arxiv: http://arxiv.org/abs/1511.06434
github: https://github.com/jazzsaxmafia/dcgan_tensorflow
github: https://github.com/Newmu/dcgan_code
github: https://github.com/mattya/chainer-DCGAN
github: https://github.com/soumith/dcgan.torch
github: https://github.com/carpedm20/DCGAN-tensorflow
Discriminative Regularization for Generative Models

arxiv: http://arxiv.org/abs/1602.03220
github: https://github.com/vdumoulin/discgen
Auxiliary Deep Generative Models

arxiv: http://arxiv.org/abs/1602.05473
One-Shot Generalization in Deep Generative Models (Google DeepMind. ICML 2016)

arxiv: http://arxiv.org/abs/1603.05106
Synthesizing Dynamic Textures and Sounds by Spatial-Temporal Generative ConvNet

project page: http://www.stat.ucla.edu/~jxie/STGConvNet/STGConvNet.html
paper:http://www.stat.ucla.edu/~jxie/STGConvNet/STGConvNet_file/doc/STGConvNet.pdf
3D
Weakly-supervised Disentangling with Recurrent Transformations for 3D View Synthesis (NIPS 2015)

paper: http://www-personal.umich.edu/~reedscot/nips15_rotator_final.pdf

Blogs
Generative Adversarial Autoencoders in Theano

blog: https://swarbrickjones.wordpress.com/2016/01/24/generative-adversarial-autoencoders-in-theano/
github: https://github.com/mikesj-public/dcgan-autoencoder
Torch convolutional GAN: Generating Faces with Torch

blog: http://torch.ch/blog/2015/11/13/gan.html
github: https://github.com/skaae/torch-gan
Generating Large Images from Latent Vectors

http://blog.otoro.net/2016/04/01/generating-large-images-from-latent-vectors/

Generative Adversarial Network Demo for Fresh Machine Learning #2

youtube: https://www.youtube.com/watch?v=deyOX6Mt_As&feature=em-uploademail
github: https://github.com/llSourcell/Generative-Adversarial-Network-Demo
demo: http://cs.stanford.edu/people/karpathy/gan/
Projects
Generate cat images with neural networks

github: https://github.com/aleju/cat-generator
TF-VAE-GAN-DRAW

intro: A collection of generative methods implemented with TensorFlow (Deep Convolutional Generative Adversarial Networks (DCGAN), Variational Autoencoder (VAE) and DRAW: A Recurrent Neural Network For Image Generation).
github: https://github.com/ikostrikov/TensorFlow-VAE-GAN-DRAW
Generating Large Images from Latent Vectors

project page: http://blog.otoro.net/2016/04/01/generating-large-images-from-latent-vectors/
github: https://github.com/hardmaru/cppn-gan-vae-tensorflow
Generating Large Images from Latent Vectors - Part Two

project page: http://blog.otoro.net/2016/06/02/generating-large-images-from-latent-vectors-part-two/
github: https://github.com/hardmaru/resnet-cppn-gan-tensorflow

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值