RKNN-Toolkit2

1.概要

2.内容

RKNN-Toolkit2 是由瑞芯微电子(Rockchip)开发的一套用于深度学习模型优化和推理的工具。它主要面向在瑞芯微SoC上进行AI应用开发,但也可以在PC平台上使用,进行模型的转换、量化、推理等操作。以下是关于RKNN-Toolkit2的详细介绍:

一、主要功能

  1. 模型转换

    • 支持的框架:支持将Caffe、TensorFlow、TensorFlow Lite、ONNX、DarkNet、PyTorch等多种深度学习框架的模型转换为RKNN格式的模型。
    • 导入导出:支持RKNN模型的导入和导出,使得转换后的模型能够在Rockchip NPU平台上加载和使用。
  2. 量化功能

    • 量化类型:支持将浮点模型量化为定点模型,目前支持的量化方法为非对称量化(asymmetric_quantized-8),并支持混合量化功能。
    • 量化精度分析:提供量化精度分析功能,可以给出模型量化前后每一层推理结果与浮点模型推理结果的余弦距离,有助于分析量化误差,提高量化模型的精度。
  3. 模型推理

    • PC端推理:能够在PC上模拟Rockchip NPU运行RKNN模型,并获取推理结果。
    • 板端推理:将RKNN模型分发到指定的NPU设备上进行推理,并获取推理结果。
  4. 性能和内存评估

    • 性能评估:将RKNN模型分发到指定的NPU设备上运行,评估模型在实际设备上的性能表现。
    • 内存评估:评估模型在实际设备上运行时的内存占用情况。
  5. 模型加密

    • 加密功能:提供模型加密功能,可以使用指定的加密等级将RKNN模型整体加密。由于RKNN模型的加密是在NPU驱动中完成的,使用加密模型时,与普通RKNN模型一样加载即可,NPU驱动会自动对其进行解密。

二、安装与使用

  1. 安装环境

    • 操作系统:RKNN-Toolkit2运行在PC平台(x86/arm64),支持Ubuntu等Linux操作系统。
    • Python版本:建议使用Python 3.8及以上版本。
  2. 安装步骤

    • 创建虚拟环境

      • 使用minicondaanaconda创建一个新的虚拟环境,以避免与其他Python项目的依赖冲突。
      • 例如,使用miniconda创建环境的命令为:

      conda create -n rknn python=3.8
      conda activate rknn
    • 安装依赖

      • 更新包管理器并安装必要的依赖库,如python3-devpython3-pipgcc等。
      • 使用pip安装RKNN-Toolkit2及其依赖库。可以从瑞芯微官方仓库拉取最新版本的代码,或者从提供的压缩包中安装。
    • 配置pip源(可选):

      • 为提高下载速度,可以配置国内的pip源,如清华大学开源软件镜像站、阿里云开源镜像站等。
    • 验证安装

      • 通过在Python中导入RKNN模块来验证安装是否成功。
  3. 使用示例

    • 模型转换

      • 使用RKNN-Toolkit2提供的API将其他框架的模型转换为RKNN模型。例如,将TensorFlow模型转换为RKNN模型的代码示例如下:

      from rknn.api import RKNN
      
      rknn = RKNN()
      
      # 配置模型转换参数
      ret = rknn.config(mean_values=[127.5, 127.5, 127.5], std_values=[127.5, 127.5, 127.5], target_platform='rk3588')
      
      # 加载TensorFlow模型
      ret = rknn.load_tensorflow(tf_pb='path_to_tf_model.pb', inputs=['input_node'], outputs=['output_node'], input_size_list=[[1, 224, 224, 3]])
      
      # 转换模型
      ret = rknn.build(do_quantization=True, dataset='./dataset.txt')
      
      # 导出RKNN模型
      ret = rknn.export_rknn('model.rknn')
    • 模型推理

      • 使用RKNN-Toolkit2提供的API在PC或NPU设备上进行模型推理。例如,在PC上进行推理的代码示例如下:

      from rknn.api import RKNN
      import cv2
      
      rknn = RKNN()
      
      # 加载RKNN模型
      ret = rknn.load_rknn('model.rknn')
      
      # 初始化运行时环境
      ret = rknn.init_runtime(target='cpu')  # 可以在PC上模拟NPU
      
      # 预处理输入图像
      img = cv2.imread('test.jpg')
      img = cv2.resize(img, (224, 224))
      img = img.astype(np.float32)
      img = (img - 127.5) / 127.5
      img = np.expand_dims(img, axis=0)
      
      # 进行推理
      outputs = rknn.inference(inputs=[img])
      
      # 打印推理结果
      print(outputs)
      
      # 释放资源
      rknn.release()

三、应用场景

RKNN-Toolkit2广泛应用于各种需要高效、低功耗AI推理的场景,如:

  • 计算机视觉:图像识别、目标检测、人脸识别等任务。在安防监控、自动驾驶、医疗影像分析等领域有着广泛的应用。
  • 自然语言处理:文本分类、情感分析、机器翻译等任务。使得处理大规模文本数据变得更高效。
  • 语音识别与处理:在语音识别、语音合成等方面,提高处理速度和准确性,应用于智能语音助手、语音交互系统等场景。
  • 智能家居与物联网:利用NPU的低功耗特性,实现设备的智能化和自动化。
  • 医疗健康:加速医学影像分析、疾病诊断、基因组学等领域的大规模数据处理和分析。
  • 智能交通:用于车辆识别、交通流量监控、智能交通信号灯控制等任务,提升交通系统的效率和安全性。

四、优势与特点

  • 丰富的框架支持:支持多种主流的深度学习框架,方便用户将自主研发的算法模型转换为RKNN模型。
  • 高效的模型转换与推理:提供高效的模型转换算法和推理引擎,支持模型的量化和加密,提高模型的部署效率和安全性。
  • 灵活的部署方式:既可以在PC上进行模型的转换和推理仿真,也可以将模型部署到瑞芯微的NPU设备上,实现高效的边缘计算。
  • 完善的文档与示例:提供详细的用户手册和示例代码,帮助用户快速上手并掌握RKNN-Toolkit2的使用方法。

通过RKNN-Toolkit2,开发者可以更高效地利用瑞芯微NPU的计算能力,实现更快速、更准确的神经网络推理,加速AI应用的落地。

3.关联链接

4.关联知识

1.rknn-toolkit2 c++ 应用举例

关于使用RKNN-Toolkit2进行C++应用的举例,由于RKNN-Toolkit2主要提供Python接口进行模型转换和推理,直接关于C++应用的官方文档或示例可能相对较少。不过,结合RKNN-Toolkit2的功能和C++编程的特点,可以构想一个使用RKNN-Toolkit2进行C++应用的场景,并给出相应的代码框架。

应用场景

假设我们需要在一个C++项目中加载一个RKNN模型,并进行推理。这个场景可能涉及到图像处理或自然语言处理等AI应用。

代码框架

以下是一个简化的代码框架,演示如何在C++项目中加载和使用RKNN模型进行推理:

  1. 环境准备

    • 确保已安装RKNN-Toolkit2,并配置好相应的Python环境。
    • 在C++项目中,可能需要通过Python的C++ API(如pybind11)来调用RKNN-Toolkit2的功能。
  2. C++代码框架

    #include <pybind11/pybind11.h>
    #include <pybind11/numpy.h>
    #include <iostream>
    #include <vector>
    #include <memory>
    
    namespace py = pybind11;
    
    // 定义一个类,用于封装RKNN模型的加载和推理功能
    class RKNNModel {
    public:
    	RKNNModel(const std::string& model_path) {
    		// 初始化Python解释器
    		Py_Initialize();
    
    		// 导入RKNN模块
    		py::module rknn_module = py::module::import("rknn.api");
    
    		// 创建RKNN对象
    		rknn_obj = rknn_module.attr("RKNN")();
    
    		// 加载RKNN模型
    		rknn_obj.attr("load_rknn")(model_path);
    
    		// 初始化运行时环境(假设在CPU上运行)
    		rknn_obj.attr("init_runtime")(py::str("cpu"));
    	}
    
    	~RKNNModel() {
    		// 释放RKNN对象
    		rknn_obj.attr("release")();
    
    		// 终止Python解释器
    		Py_Finalize();
    	}
    
    	std::vector<py::array_t<float>> inference(const py::array_t<float>& input) {
    		// 调用RKNN对象的inference方法进行推理
    		py::list outputs = rknn_obj.attr("inference")(input);
    
    		// 将Python列表转换为C++向量
    		std::vector<py::array_t<float>> output_vectors;
    		for (auto& output : outputs) {
    			output_vectors.push_back(output.cast<py::array_t<float>>());
    		}
    
    		return output_vectors;
    	}
    
    private:
    	py::object rknn_obj;
    };
    
    int main() {
    	// 加载RKNN模型
    	RKNNModel model("path_to_rknn_model.rknn");
    
    	// 创建一个示例输入(假设输入是一个形状为[1, 3, 224, 224]的浮点数数组)
    	std::vector<float> input_data(1 * 3 * 224 * 224, 0.0f);
    	py::array_t<float> input_array({1, 3, 224, 224}, input_data.data());
    
    	// 进行推理
    	std::vector<py::array_t<float>> outputs = model.inference(input_array);
    
    	// 打印推理结果(这里只打印第一个输出)
    	std::cout << "Inference result: " << std::endl;
    	for (auto& output : outputs[0]) {
    		std::cout << output.item<float>() << " ";
    	}
    	std::cout << std::endl;
    
    	return 0;
    }

说明

  1. 环境依赖

    • 需要安装pybind11库,以便在C++中调用Python代码。
    • 确保已安装RKNN-Toolkit2,并配置好相应的Python环境。
  2. 代码解释

    • RKNNModel类:封装了RKNN模型的加载和推理功能。在构造函数中,初始化Python解释器,导入RKNN模块,创建RKNN对象,并加载指定的RKNN模型。在析构函数中,释放RKNN对象并终止Python解释器。
    • inference方法:接受一个NumPy数组作为输入,调用RKNN对象的inference方法进行推理,并将推理结果(Python列表)转换为C++向量返回。
    • main函数:创建一个示例输入(假设输入是一个形状为[1, 3, 224, 224]的浮点数数组),加载RKNN模型,进行推理,并打印推理结果。
  3. 注意事项

    • 在实际项目中,可能需要处理更复杂的输入和输出格式。
    • 需要确保Python环境和RKNN-Toolkit2的正确配置,以避免运行时错误。

这个代码框架仅为示例,实际项目中可能需要根据具体需求进行调整和扩展。

2.target_link_libraries :指定一个目标(target)需要链接的库

target_link_libraries 是一个在 CMake 中使用的命令,用于指定一个目标(target)需要链接的库。这个命令非常关键,因为它决定了你的项目或应用程序在编译时会链接到哪些外部或内部库,从而影响到最终可执行文件或库的功能和依赖。

基本用法

target_link_libraries 的基本语法如下:

target_link_libraries(<target> [<item>...])

  • <target>:这是你想要链接库的目标的名称。这个目标可以是使用 add_executable 或 add_library 命令定义的可执行文件或库。
  • <item>:这里可以是一个库名,也可以是其他目标名。如果是库名,CMake 会在系统的标准库路径或指定的库路径中查找这个库。如果是目标名,CMake 会自动处理目标之间的依赖关系。

示例

假设你有一个名为 my_app 的可执行文件,它需要链接到名为 my_library 的库,你可以这样写:

add_executable(my_app main.cpp)
add_library(my_library STATIC my_library.cpp)
target_link_libraries(my_app PRIVATE my_library)

在这个例子中,my_app 是目标,而 my_library 是它需要链接的库。PRIVATE 关键字表示 my_library 只在 my_app 的构建中被使用,不会被 my_app 的使用者所链接。

链接类型

target_link_libraries 还支持指定链接的类型,主要有 PRIVATEPUBLIC 和 INTERFACE 三种:

  • PRIVATE:链接的库仅对目标本身可见,不会传播到依赖这个目标的其他目标。
  • PUBLIC:链接的库对目标及其依赖者都可见。
  • INTERFACE:链接的库只对依赖这个目标的其他目标可见,对目标本身不可见。

选择正确的链接类型对于管理项目的依赖关系非常重要,它可以帮助你控制库的可见性和链接方式,避免不必要的依赖传播。

结论

target_link_libraries 是 CMake 中管理项目依赖关系的一个强大工具。通过正确使用这个命令,你可以精确控制你的目标链接到哪些库,以及如何将这些依赖关系传播到其他目标。这对于维护大型、复杂的项目尤其重要。

 3.查看指定文件的信息

在 CMake 或一般的软件开发环境中,查看指定文件的信息通常不是通过 CMake 本身来完成的,因为 CMake 主要用于配置和管理项目的构建过程,而不是直接用于文件信息查询。不过,有几种方法可以帮助你获取文件的相关信息:

1. 使用操作系统命令

  • Linux/Mac: 你可以使用 ls -lfile 或 stat 等命令来查看文件的详细信息,如大小、权限、修改时间和文件类型。
    • ls -l filename:列出文件的详细信息。
    • file filename:显示文件类型。
    • stat filename:提供文件的详细统计信息。
  • Windows: 你可以使用 dir 命令在命令提示符中查看文件的基本信息,或者使用文件属性对话框(右键点击文件,选择“属性”)查看更详细的信息。
    • dir filename:在命令提示符中列出文件信息。

2. 使用脚本

如果你需要在自动化过程中获取文件信息,可以编写一个脚本。例如,使用 Python:

import os

filename = 'example.txt'

# 获取文件大小(字节)
file_size = os.path.getsize(filename)
print(f"File size: {file_size} bytes")

# 获取文件修改时间
mod_time = os.path.getmtime(filename)
print(f"Last modified: {mod_time}")  # 这将输出一个时间戳,你可以使用 datetime 模块来格式化它

# 检查文件是否存在
if os.path.exists(filename):
    print("File exists.")
else:
    print("File does not exist.")

3. 在 CMake 中

虽然 CMake 本身不是用于文件信息查询的工具,但你可以在 CMake 脚本中使用一些命令来检查文件的存在性或获取文件路径等信息:

  • if(EXISTS filename):检查文件是否存在。
  • get_filename_component(VAR Name PATH):提取文件路径的组成部分。

例如:

set(FILENAME "example.txt")

if(EXISTS ${FILENAME})
    message(STATUS "File ${FILENAME} exists.")
else()
    message(STATUS "File ${FILENAME} does not exist.")
endif()

4. 使用集成开发环境(IDE)

许多 IDE 提供了查看文件详细信息的功能。例如,在 Visual Studio 中,你可以通过“解决方案资源管理器”右键点击文件并选择“属性”来查看文件的详细信息。

选择哪种方法取决于你的具体需求和工作环境。对于简单的文件信息查询,操作系统命令通常是最直接和有效的方式。对于更复杂的自动化任务,编写脚本可能是更好的选择。

4.rknn-toolkit2 

RKNN-Toolkit2 是由瑞芯微电子(Rockchip)开发的一款深度学习模型优化和推理工具,旨在帮助用户将自主研发的算法模型部署到瑞芯微的芯片平台上。它提供了模型转换、量化、推理、性能和内存评估、量化精度分析等功能,支持多种主流的深度学习框架,如Caffe、TensorFlow、TensorFlow Lite、ONNX、DarkNet、PyTorch等。

主要功能

  1. 模型转换

    • 支持框架广泛:能够将多种深度学习框架的模型转换为RKNN格式,便于在瑞芯微的NPU(神经网络处理单元)上进行推理。
    • 导入导出:支持RKNN模型的导入和导出,便于模型的共享和复用。
  2. 量化功能

    • 浮点转定点:支持将浮点模型量化为定点模型,以减少模型大小和提高推理速度。
    • 混合量化:支持混合量化功能,以进一步提高量化模型的精度。
  3. 模型推理

    • PC端模拟:能够在PC上模拟Rockchip NPU运行RKNN模型,便于开发和调试。
    • 板端推理:能够将RKNN模型分发到指定的NPU设备上进行推理,获取实际的推理结果。
  4. 性能和内存评估

    • 性能评估:将RKNN模型分发到指定NPU设备上运行,评估模型在实际设备上的性能和推理速度。
    • 内存评估:评估模型在实际设备上的内存占用情况,帮助用户优化模型。
  5. 量化精度分析

    • 误差分析:给出模型量化前后每一层推理结果与浮点模型推理结果的余弦距离,便于分析量化误差和提高量化模型的精度。
  6. 模型加密

    • 保护知识产权:使用指定的加密等级将RKNN模型整体加密,确保模型的安全性。

使用场景

  • 嵌入式AI应用:适用于在物联网、工业控制、智慧交通、轻量级人工智能等领域开发嵌入式AI应用。
  • 模型部署:帮助用户将训练好的模型快速部署到瑞芯微的芯片平台上,实现高效的神经网络推理。

安装与使用

安装环境
  • 操作系统:支持在Linux(如Ubuntu)环境下运行。
  • Python版本:建议使用Python 3.8或更高版本。
安装步骤
  1. 安装依赖

    • 更新系统包列表:

      sudo apt update

    • 安装必要的依赖库:

      sudo apt-get install python3-dev python3-pip python3.8-venv gcc libxslt1-dev zlib1g-dev libglib2.0-0 libsm6 libgl1-mesa-glx libprotobuf-dev

  2. 创建虚拟环境(可选,但推荐):

    • 使用venv创建虚拟环境:

      mkdir project-Toolkit2 && cd project-Toolkit2
      python3 -m venv toolkit2_1.5
      source toolkit2_1.5/bin/activate

    • 或者使用conda创建虚拟环境:

       

      conda create -n Toolkit2 python=3.8
      conda activate Toolkit2

  3. 安装RKNN-Toolkit2

    • 从官方仓库拉取最新版本:

       

      git clone https://github.com/rockchip-linux/rknn-toolkit2.git
      cd rknn-toolkit2

    • 配置pip源(可选,但推荐):

       

      pip3 config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple/

    • 安装依赖库:

       

      pip3 install numpy
      pip3 install -r doc/requirements_cp38-1.5.0.txt

    • 安装RKNN-Toolkit2:

       

      pip3 install packages/rknn_toolkit2-1.5.0+1fa95b5c-cp38-cp38-linux_x86_64.whl

    • 注意:安装时请确保选择的.whl文件与系统的Python版本和架构(如x86_64或arm64)相匹配。

  4. 验证安装

    • 启动Python解释器,并尝试导入RKNN模块:

       

      from rknn.api import RKNN

    • 如果没有报错,说明安装成功。

使用示例

以下是一个简单的使用示例,演示如何将一个TensorFlow模型转换为RKNN模型,并进行推理。

  1. 模型转换

    import rknn.api as rknn
    
    # 初始化RKNN对象
    rknn.config(mean_values=[[127.5, 127.5, 127.5]], std_values=[[127.5, 127.5, 127.5]], target_platform='rk3588')
    
    # 加载TensorFlow模型
    rknn.load_tensorflow(tf_pb='path_to_your_model.pb', inputs=['input_node_name'], outputs=['output_node_name'], input_size_list=[[1, 224, 224, 3]])
    
    # 转换模型
    rknn.build(do_quantization=True, dataset='./dataset.txt')
    
    # 导出RKNN模型
    rknn.export_rknn('output_model.rknn')
    
    # 释放RKNN对象
    rknn.release()
  2. 模型推理

    python复制代码

    import rknn.api as rknn
    import cv2
    
    # 初始化RKNN对象
    rknn = RKNN()
    
    # 加载RKNN模型
    rknn.load_rknn('output_model.rknn')
    
    # 初始化运行时环境
    rknn.init_runtime(target='rk3588')
    
    # 读取图像
    img = cv2.imread('input_image.jpg')
    
    # 推理
    outputs = rknn.inference(inputs=[img])
    
    # 释放RKNN对象
    rknn.release()

注意事项

  • 硬件兼容性:请确保您的开发板与RKNN-Toolkit2兼容,并安装了相应的NPU驱动。
  • 模型优化:在模型部署前,建议对模型进行量化、剪枝等优化操作,以提高推理速度和降低功耗。
  • 版本更新:RKNN-Toolkit2会不断更新和完善功能,请及时关注官方发布的最新版本。

通过以上介绍,您应该对RKNN-Toolkit2有了基本的了解。如果您需要更详细的信息或遇到具体的问题,可以参考官方文档或寻求社区的帮助。

5.librknn_api.so和rknn-toolkit2啥关系 

librknn_api.sorknn-toolkit2是瑞芯微(Rockchip)提供的用于神经网络应用开发的不同组件,它们之间有着紧密的关系。以下是关于这两者的详细介绍及它们之间关系的说明:

librknn_api.so

  • 定义librknn_api.so是一个动态链接库文件,提供了RKNN API的C/C++接口。
  • 功能:它允许开发者在Linux和Android平台上,使用C/C++编程语言直接调用RKNN API,以实现神经网络模型的推理等功能。
  • 使用场景:适用于需要高性能或低级别控制的AI应用开发场景,如嵌入式系统、物联网设备等。
  • 安装与配置:在Linux平台上,通常需要安装RKNN API SDK来获取这个库文件。安装成功后,可以在系统目录中找到它,并在编译和链接应用程序时引用它。

rknn-toolkit2

  • 定义rknn-toolkit2是一个软件开发工具包(SDK),用于深度学习模型的优化和推理。

  • 功能

    1. 模型转换:支持将多种深度学习框架(如Caffe、TensorFlow、PyTorch等)的模型转换为RKNN格式,便于在瑞芯微的NPU(神经网络处理单元)上进行推理。
    2. 量化与优化:支持模型的量化、剪枝等优化操作,以提高推理速度和降低功耗。
    3. 模型推理与评估:能够在PC上模拟Rockchip NPU运行RKNN模型,并评估模型在实际设备上的性能和内存占用情况。
  • 使用场景:适用于需要在瑞芯微平台上进行AI应用开发,或需要在PC上进行模型转换、优化和推理的场景。

  • 安装与使用:通常需要在支持的环境中(如Ubuntu Linux)通过pip安装,并使用Python编程语言进行开发。

二者关系

  • 依赖关系librknn_api.sorknn-toolkit2进行模型推理时可能需要的一个底层库文件。虽然rknn-toolkit2提供了Python接口,但在某些情况下(如需要高性能或低级别控制时),开发者可能会直接使用librknn_api.so进行开发。
  • 功能互补rknn-toolkit2提供了模型转换、优化和推理等高级功能,而librknn_api.so则提供了底层的C/C++接口,允许开发者更灵活地实现这些功能。
  • 应用场景:两者共同构成了瑞芯微提供的神经网络应用开发解决方案,适用于从模型训练到部署的全流程。

总结来看,librknn_api.sorknn-toolkit2是瑞芯微提供的神经网络应用开发解决方案中的两个重要组件,它们之间有着紧密的关系,共同支持开发者在瑞芯微平台上进行AI应用开发。

6.安装rknn-toolkit2会把librknn_api.so也安装上吗 

在安装rknn-toolkit2时,是否会同时安装librknn_api.so,这个问题并没有一个绝对的答案,因为它取决于具体的安装方式和环境。以下是对这一问题的详细分析:

安装rknn-toolkit2

rknn-toolkit2是一个软件开发工具包(SDK),用于深度学习模型的优化和推理。在大多数情况下,通过pip安装rknn-toolkit2时,它主要安装的是Python接口和相关工具,这些工具和接口用于模型的转换、量化、推理等功能。

librknn_api.so的安装

  • 动态链接库文件librknn_api.so是一个动态链接库文件,提供了RKNN API的C/C++接口。它允许开发者在Linux和Android平台上,使用C/C++编程语言直接调用RKNN API,以实现神经网络模型的推理等功能。
  • 安装方式librknn_api.so通常不是通过pip安装rknn-toolkit2时直接安装的。它通常是RKNN API SDK的一部分,需要在特定的开发环境中单独安装或配置。

安装rknn-toolkit2时是否会同时安装librknn_api.so

  • 可能的情况:在某些特定的开发环境中,如瑞芯微提供的官方开发板或镜像系统中,可能已经预装了librknn_api.so,因此在安装rknn-toolkit2时,您可能不需要手动安装它。然而,这种情况并不是普遍的,具体取决于您的开发环境和需求。
  • 一般情况:在大多数情况下,安装rknn-toolkit2时并不会自动安装librknn_api.so。如果您需要使用C/C++接口进行开发,您可能需要单独安装或配置RKNN API SDK,以获取librknn_api.so

建议

如果您需要使用librknn_api.so进行开发,建议您查阅瑞芯微的官方文档或联系技术支持,以获取关于如何安装和配置RKNN API SDK的详细指导。同时,确保您的开发环境满足安装librknn_api.so的要求,如操作系统版本、架构等。

概括来说,安装rknn-toolkit2时是否会同时安装librknn_api.so,取决于具体的安装方式和环境。在大多数情况下,您可能需要单独安装或配置RKNN API SDK以获取librknn_api.so

7.安装rknn-toolkit2 

安装rknn-toolkit2的步骤可能会因操作系统版本、Python版本以及具体需求的不同而有所差异。以下是一个基于通用情况的安装步骤指南:

安装前准备

  1. 确认操作系统

    • rknn-toolkit2支持多种Linux发行版,如Ubuntu、Debian等。
    • 确保您的操作系统版本与rknn-toolkit2的兼容性。
  2. 安装Python

    • rknn-toolkit2支持Python 3.6及以上版本。
    • 使用包管理器(如apt-get)安装Python,或者从Python官网下载并安装。
  3. 安装pip

    • pip是Python的包管理器,用于安装和管理Python包。
    • 通常,Python安装时会自动包含pip。如果没有,可以使用包管理器单独安装。

安装步骤

  1. 创建虚拟环境(可选)

    • 为了避免包冲突,建议使用虚拟环境来安装rknn-toolkit2

    • 可以使用venv(Python内置)或conda(Anaconda或Miniconda)来创建虚拟环境。

    • 例如,使用venv创建虚拟环境:

       

      python3 -m venv rknn-env
      source rknn-env/bin/activate

    • 使用conda创建虚拟环境:

       

      conda create -n rknn-env python=3.8
      conda activate rknn-env

  2. 安装依赖库

    • rknn-toolkit2依赖于一些Python库,如numpytensorflow等。

    • 可以从rknn-toolkit2的官方仓库或文档中找到所需的依赖库列表。

    • 使用pip安装依赖库:

       

      pip install -r /path/to/rknn-toolkit2/doc/requirements_cp38-1.x.x.txt

    • 注意替换/path/to/rknn-toolkit2为实际的rknn-toolkit2仓库路径。

  3. 安装rknn-toolkit2

    • 从GitHub或其他可信来源下载rknn-toolkit2的源代码或wheel文件。

    • 使用pip安装wheel文件:

      pip install /path/to/rknn-toolkit2/packages/rknn_toolkit2-1.x.x-cp38-cp38-linux_x86_64.whl

    • 或者,如果下载的是源代码,可以执行以下命令进行安装:

      cd /path/to/rknn-toolkit2
      python setup.py install
  4. 验证安装

    • 在Python交互式环境中导入rknn模块,以验证rknn-toolkit2是否安装成功:

      from rknn.api import RKNN

      如果没有报错,则说明安装成功。

注意事项

  1. 版本兼容性

    • 确保下载的rknn-toolkit2版本与您的操作系统、Python版本以及硬件平台兼容。
    • 如果遇到兼容性问题,可以尝试安装其他版本的rknn-toolkit2
  2. 网络问题

    • 在安装依赖库或rknn-toolkit2时,可能会遇到网络问题。
    • 可以尝试切换镜像源,如使用清华大学、中国科学技术大学等提供的Python镜像源。
  3. 权限问题

    • 在某些情况下,可能需要使用sudo命令来安装软件包。
    • 但是,建议在虚拟环境中安装时避免使用sudo,以免对系统全局环境造成影响。
  4. 文档和资源

    • 查阅rknn-toolkit2的官方文档,以获取更详细的安装和使用指南。
    • 加入相关的开发者社区或论坛,与其他开发者交流经验和解决问题。

通过以上步骤,您应该能够成功安装rknn-toolkit2。如果遇到任何问题,建议查阅官方文档或联系技术支持以获取帮助。

8.ubuntu,安装rknn-toolkit2 

在Ubuntu系统上安装rknn-toolkit2,您可以按照以下步骤进行操作。请确保您已经具备基本的Linux操作技能和Python开发环境。

安装前准备

  1. 更新软件包列表

    打开终端,输入以下命令更新Ubuntu的软件包列表:

     

    sudo apt update

  2. 安装必要的系统工具

    为了编译和安装rknn-toolkit2,您需要安装一些必要的系统工具,包括编译工具链和Python开发包:

     

    sudo apt install build-essential python3-dev python3-pip python3-venv

  3. 创建Python虚拟环境(可选)

    为了避免包冲突,建议在一个独立的Python虚拟环境中安装rknn-toolkit2。您可以使用venv(Python内置)或conda(Anaconda或Miniconda)来创建虚拟环境。

    • 使用venv创建虚拟环境:

       

      python3 -m venv rknn-env
      source rknn-env/bin/activate

    • 使用conda创建虚拟环境(如果您已安装Anaconda或Miniconda):

       

      conda create -n rknn-env python=3.8
      conda activate rknn-env

安装rknn-toolkit2

  1. 克隆rknn-toolkit2仓库

    打开终端,导航到您希望存放rknn-toolkit2代码的位置,然后使用git克隆仓库:

     

    git clone https://github.com/airockchip/rknn-toolkit2.git
    cd rknn-toolkit2

  2. 安装依赖库

    进入rknn-toolkit2目录后,使用pip安装所需的依赖库。根据您的Python版本选择合适的requirements.txt文件:

     

    pip install -r doc/requirements_cp38-2.x.x.txt

    请将cp38-2.x.x替换为您实际使用的Python版本对应的依赖文件名称。

  3. 安装rknn-toolkit2

    在安装了依赖库后,使用以下命令安装rknn-toolkit2

     

    pip install ./packages/rknn_toolkit2-2.x.x-cp38-cp38-linux_x86_64.whl

    请将2.x.x替换为您实际下载的rknn-toolkit2版本。

验证安装

安装完成后,您可以通过以下步骤验证rknn-toolkit2是否安装成功:

  1. 启动Python交互式环境

     

    python3

  2. 导入rknn模块

    在Python交互式环境中,输入以下命令:

    from rknn.api import RKNN

    如果没有报错,则说明rknn-toolkit2已经成功安装。

注意事项

  • 网络问题:在安装依赖库或rknn-toolkit2时,如果遇到网络问题,您可以尝试切换镜像源,如使用清华大学、阿里云等提供的Python镜像源。

  • 版本兼容性:确保您下载的rknn-toolkit2版本与您的操作系统、Python版本以及硬件平台兼容。

  • 文档和资源:查阅rknn-toolkit2官方文档示例代码,以获取更详细的使用指南和示例。

通过以上步骤,您应该能够在Ubuntu系统上成功安装rknn-toolkit2。如果遇到任何问题,请参考官方文档或联系技术支持以获取帮助。

 9.如何判断rknn-toolkit2是否安装

要判断rknn-toolkit2是否已经成功安装在您的系统上,您可以通过以下几种方法进行验证:

方法一:在Python交互式环境中导入模块

  1. 打开终端
    • 在您的操作系统中打开终端窗口。
  2. 激活虚拟环境(如果使用了虚拟环境)
    • 如果您在安装rknn-toolkit2时使用了虚拟环境,请确保先激活该虚拟环境。例如:
       

      source /path/to/rknn-env/bin/activate

    • 或者,如果您使用的是conda虚拟环境:
       

      conda activate rknn-env

  3. 启动Python交互式环境
    • 输入python3python(取决于您的系统配置)来启动Python交互式环境。
  4. 尝试导入rknn模块
    • 在Python交互式环境中,输入以下命令:
       

      from rknn.api import RKNN

    • 如果没有报错,并且能够成功导入RKNN类,则说明rknn-toolkit2已经安装成功。

方法二:使用pip列出已安装的包

  1. 打开终端
    • 同样,首先打开终端窗口。
  2. 激活虚拟环境(如果使用了虚拟环境)
    • 如上所述,激活您的虚拟环境。
  3. 列出已安装的包
    • 使用pip命令列出所有已安装的包,并查找rknn-toolkit2
       

      pip list | grep rknn-toolkit2

    • 如果输出中包含rknn-toolkit2及其版本号,则说明该包已经安装成功。

方法三:尝试运行示例代码

  1. 查找示例代码
    • 通常,rknn-toolkit2的官方仓库或文档中会提供示例代码。
  2. 运行示例代码
    • 下载并尝试运行一个示例代码文件。如果代码能够正常执行,并且没有报错,那么这也说明rknn-toolkit2已经安装成功。

注意事项

  • Python版本
    • 确保您使用的Python版本与rknn-toolkit2兼容。通常,rknn-toolkit2会支持特定的Python版本范围。
  • 虚拟环境
    • 如果您使用了虚拟环境,请务必在激活虚拟环境后进行上述验证步骤,以确保验证的是虚拟环境中的rknn-toolkit2安装情况。
  • 错误处理
    • 如果在导入模块或运行示例代码时遇到错误,请仔细查看错误信息,并根据错误提示进行排查和修复。

通过以上方法,您应该能够判断rknn-toolkit2是否已经成功安装在您的系统上。如果遇到任何问题,请参考官方文档或联系技术支持以获取帮助。

10.int rknn_inputs_set(rknn_context context, uint32_t n_inputs, rknn_input inputs[]); 

rknn_inputs_set 函数是用于设置 RKNN 模型输入的 API。在使用 RKNN Toolkit 进行模型推理时,您需要将输入数据传递给模型,这个函数就是用来完成这一任务的。下面是对该函数参数和用法的详细说明:

函数原型

 

c复制代码

int rknn_inputs_set(rknn_context context, uint32_t n_inputs, rknn_input inputs[]);

参数说明

  1. rknn_context context
    • RKNN 模型的上下文句柄,表示一个已经加载并初始化的模型。
    • 在使用 RKNN API 时,首先需要创建并初始化一个 RKNN 上下文,然后才能进行后续的操作。
  2. uint32_t n_inputs
    • 输入的数量,表示您要设置的输入数据的个数。
    • 通常,一个模型可能有一个或多个输入。
  3. rknn_input inputs[]
    • 一个指向 rknn_input 结构数组的指针,每个 rknn_input 结构表示一个输入数据。
    • rknn_input 结构通常包含输入数据的指针、维度、数据类型等信息。

返回值

  • int
    • 函数执行的结果,通常 0 表示成功,非 0 表示失败。
    • 具体的错误码可以在 RKNN Toolkit 的文档或头文件中找到。

用法示例

假设您有一个 RKNN 模型,并且已经创建了上下文 context,现在您要设置模型的输入数据:

 

#include <rknn_api.h>  // 假设这是 RKNN API 的头文件

// 假设已经有一个加载并初始化的 RKNN 上下文 context
rknn_context context;

// 定义输入数据
float input_data[1024] = { /* 填充输入数据 */ };

// 创建 rknn_input 结构
rknn_input inputs[1];
inputs[0].index = 0;  // 输入的索引,通常从 0 开始
inputs[0].type = RKNN_TENSOR_FLOAT32;  // 输入数据的类型
inputs[0].fmt = RKNN_TENSOR_NHWC;  // 输入数据的格式(如果有多个维度)
inputs[0].size = sizeof(input_data);  // 输入数据的大小
inputs[0].buf = input_data;  // 指向输入数据的指针

// 设置输入数据
int ret = rknn_inputs_set(context, 1, inputs);
if (ret != 0) {
    // 处理错误
    printf("Failed to set inputs: %d\n", ret);
}

注意事项

  • 输入数据的格式和类型
    • 确保输入数据的格式和类型与模型期望的一致。
    • 不同的模型可能对输入数据的格式和类型有不同的要求。
  • 输入数据的索引
    • rknn_input.index 表示输入数据的索引,通常与模型定义时的输入顺序对应。
  • 错误处理
    • 在调用 rknn_inputs_set 后,检查返回值以确保输入数据设置成功。
    • 如果设置失败,可以根据错误码进行相应的错误处理。

通过正确使用 rknn_inputs_set 函数,您可以将输入数据传递给 RKNN 模型,为后续的模型推理做好准备。

11.int rknn_run(rknn_context context, rknn_run_extend* extend); 

rknn_run 函数是用于执行 RKNN 模型推理的主要 API。在使用 RKNN Toolkit 进行模型推理时,设置完输入数据后,需要调用这个函数来执行模型的前向传播计算,并获取输出结果。下面是对该函数参数和用法的详细说明:

函数原型

 

c复制代码

int rknn_run(rknn_context context, rknn_run_extend* extend);

参数说明

  1. rknn_context context
    • RKNN 模型的上下文句柄,表示一个已经加载并初始化的模型。
    • 在调用 rknn_run 之前,您需要确保模型已经正确加载,并且输入数据已经设置完毕。
  2. rknn_run_extend* extend
    • 一个指向 rknn_run_extend 结构的指针,用于提供额外的运行选项或配置。
    • 如果不需要额外的配置,可以传递 NULL
    • rknn_run_extend 结构可能包含一些用于控制推理过程的选项,比如是否启用性能分析、是否使用特定的硬件加速等。

返回值

  • int
    • 函数执行的结果,通常 0 表示成功,非 0 表示失败。
    • 具体的错误码可以在 RKNN Toolkit 的文档或头文件中找到。

用法示例

假设您已经有一个加载并初始化的 RKNN 上下文 context,并且已经设置了输入数据,现在您要执行模型的推理:

#include <rknn_api.h>  // 假设这是 RKNN API 的头文件

// 假设已经有一个加载并初始化的 RKNN 上下文 context
rknn_context context;

// (此处省略输入数据设置的代码)

// 执行模型推理
rknn_run_extend extend;  // 如果需要额外的配置,可以初始化这个结构
// extend.some_option = ...;  // 设置额外的选项(如果有)

int ret = rknn_run(context, &extend);  // 如果不需要额外配置,可以传递 NULL
if (ret != 0) {
    // 处理错误
    printf("Failed to run model: %d\n", ret);
} else {
    // 推理成功,可以获取输出数据
    // (此处省略输出数据获取的代码)
}

注意事项

  • 模型准备
    • 在调用 rknn_run 之前,确保模型已经正确加载,并且所有必要的输入数据已经设置。
  • 额外配置
    • rknn_run_extend 结构提供了额外的配置选项,但这些选项可能是可选的。
    • 如果不需要额外的配置,可以直接传递 NULL
  • 错误处理
    • 在调用 rknn_run 后,检查返回值以确保推理过程成功。
    • 如果推理失败,可以根据错误码进行相应的错误处理。
  • 性能考虑
    • 在某些情况下,您可能希望通过 rknn_run_extend 结构来启用性能分析或优化选项,以提高推理速度或降低资源消耗。

通过正确使用 rknn_run 函数,您可以执行 RKNN 模型的推理过程,并获取模型的输出结果。这是使用 RKNN Toolkit 进行模型部署和推理的关键步骤之一。

12.设置的类库路径,会不会写入到编译的应用程序中 

set(RKNN_API_PATH ${CMAKE_SOURCE_DIR}/3rdparty/librknn_api)  #该变量定义了RKNN API库的路径
set(LIB_ARCH aarch64)
set(RKNN_RT_LIB ${RKNN_API_PATH}/${LIB_ARCH}/librknnrt.so)  # 该变量定义了RKNN运行时库的路径。这里设置的类库路径,不会写入到编译的应用程序中,对吧。应用程序中只会记录下类库的名称

 

在 CMake 中,使用 set 命令定义的变量用于配置构建过程,而不会直接写入到最终编译的应用程序中。具体来说,您提到的以下 CMake 配置:

set(RKNN_API_PATH ${CMAKE_SOURCE_DIR}/3rdparty/librknn_api)
set(LIB_ARCH aarch64)
set(RKNN_RT_LIB ${RKNN_API_PATH}/${LIB_ARCH}/librknnrt.so)

解释

  1. RKNN_API_PATH
    • 定义了 RKNN API 库的根目录路径。
    • 这个路径是相对于 CMake 项目源目录的。
  2. LIB_ARCH
    • 定义了库的架构,这里是 aarch64
    • 用于指定特定架构下的库文件目录。
  3. RKNN_RT_LIB
    • 定义了 RKNN 运行时库 librknnrt.so 的完整路径。
    • 这个路径是基于 RKNN_API_PATH 和 LIB_ARCH 拼接而成的。

编译过程中的作用

  • 路径配置
    • 这些变量在 CMake 配置阶段被定义,用于指导 CMake 如何找到和使用特定的库文件。
    • 它们不会直接被编译到最终的应用程序中。
  • 链接过程
    • 在链接阶段,CMake 会使用这些变量来指定链接器应该查找的库文件路径和库文件名。
    • 例如,您可能会在 target_link_libraries 中使用 ${RKNN_RT_LIB} 来指定链接哪个库。
  • 运行时库查找
    • 编译后的应用程序只会记录下库文件的名称(如 librknnrt.so),而不会记录下完整的路径。
    • 在运行时,系统会根据环境变量(如 LD_LIBRARY_PATH)或系统默认的库路径来查找这个库文件。

运行时注意事项

  • 库文件可用性
    • 确保在运行时,库文件 librknnrt.so 存在于系统的库路径中,或者通过 LD_LIBRARY_PATH 环境变量指定其路径。
    • 否则,应用程序可能会因为找不到库文件而无法启动或运行。
  • 部署
    • 在部署应用程序时,通常需要将所需的库文件一起打包,并在目标系统上配置好库路径。

总结来说,CMake 中的这些变量用于配置构建过程,而不会影响最终应用程序中记录的库文件路径。应用程序在运行时需要依赖系统的库路径查找机制来找到并使用这些库文件。

13.接上,如果运行时LD_LIBRARY_PATH没有设置,会怎样呢 

如果运行时 LD_LIBRARY_PATH 没有设置,系统会在默认的共享库搜索路径中查找所需的库文件。具体来说:

默认共享库搜索路径

在 Linux 和类 Unix 操作系统中,共享库(动态链接库)的搜索路径是预定义的。当运行一个依赖共享库的可执行文件时,系统会在以下路径中查找这些库文件:

  1. 编译时指定的路径
    • 如果在编译应用程序时使用了 -rpath 或 -Wl,-rpath 选项,指定的路径会被嵌入到二进制文件中,并在运行时优先搜索。
  2. 环境变量 LD_LIBRARY_PATH
    • 如果设置了 LD_LIBRARY_PATH 环境变量,系统会在这些路径中查找库文件。
  3. 系统配置文件 /etc/ld.so.conf
    • 该文件包含了额外的库搜索路径,系统会在这些路径中查找库文件。
  4. 默认路径
    • 如果以上方法都未找到库文件,系统会在默认的库路径中查找,这些路径通常包括 /lib 和 /usr/lib(以及 /lib64 和 /usr/lib64,具体取决于系统架构)。

LD_LIBRARY_PATH 未设置的影响

如果运行时 LD_LIBRARY_PATH 没有设置,系统将不会在这些路径中查找库文件。此时,系统将继续在编译时指定的路径(如果有的话)、系统配置文件 /etc/ld.so.conf 指定的路径以及默认路径中查找库文件。

  • 如果库文件存在于这些路径中,程序将能够正常运行。
  • 如果库文件不存在于这些路径中,程序将无法找到库文件,从而无法启动或运行,并报告动态链接库未找到的错误。

解决方法

为了避免因 LD_LIBRARY_PATH 未设置而导致的库文件找不到的问题,可以采取以下措施:

  1. 将库文件安装在默认路径中
    • 将所需的库文件安装在系统的默认库路径中(如 /usr/lib 或 /lib),这样无论 LD_LIBRARY_PATH 是否设置,系统都能找到库文件。
  2. 使用 -rpath 或 -Wl,-rpath 选项
    • 在编译应用程序时,使用 -rpath 或 -Wl,-rpath 选项指定库文件的搜索路径。这样,即使 LD_LIBRARY_PATH 未设置,系统也能在运行时找到库文件。
  3. 设置 LD_LIBRARY_PATH 环境变量
    • 在运行程序之前,设置 LD_LIBRARY_PATH 环境变量,包含库文件所在的路径。这可以在命令行中通过 export LD_LIBRARY_PATH=... 来完成。
  4. 编辑 /etc/ld.so.conf 文件
    • 将库文件所在的路径添加到 /etc/ld.so.conf 文件中,然后运行 sudo ldconfig 命令更新动态链接库缓存。这样,系统会在这些路径中查找库文件。

总之,LD_LIBRARY_PATH 未设置时,系统将在默认的共享库搜索路径中查找库文件。为了确保程序能够正常运行,应该确保库文件存在于这些路径中,或者通过其他方式指定库文件的搜索路径。

 

### 关于 RKNN-Toolkit2 的安装方法 RKNN-Toolkit 是 Rockchip 提供的一个工具包,用于支持其 AI 芯片上的神经网络模型转换和优化。以下是针对不同操作系统的 RKNN-Toolkit2 安装指南。 #### Windows 系统下的安装 在 Windows 上安装 RKNN-Toolkit2 可通过以下方式完成: 1. **获取安装文件** 需要从官方提供的路径 `SDK/external/rknn-toolkit/packages/` 下载适合的 `.whl` 文件[^2]。例如,对于 Python 3.6 和 Win64 平台,可使用如下命令下载并安装: ```bash wget http://repo.rock-chips.com/python/rknn_toolkit2-<version>-cp36-cp36m-win_amd64.whl pip install rknn_toolkit2-<version>-cp36-cp36m-win_amd64.whl ``` 2. **验证安装** 使用以下命令确认 RKNN-Toolkit 是否已成功安装[^1]: ```bash python -c "import rknn.api; print(rknn.api.__version__)" ``` #### Linux 系统下的安装 Linux 环境下可以通过类似的流程完成安装: 1. **下载对应版本的 .whl 文件** 对于 Linux x86_64 架构,可以执行以下命令下载指定版本的轮子文件[^3]: ```bash wget http://repo.rock-chips.com/python/rknn_toolkit2-<version>-cp36-cp36m-linux_x86_64.whl ``` 2. **安装 wheel 文件** 利用 `pip` 工具进行安装: ```bash pip install rknn_toolkit2-<version>-cp36-cp36m-linux_x86_64.whl ``` 3. **检查安装状态** 同样可通过导入模块的方式检验是否正常工作: ```python import rknn.api as rknn_api print(rknn_api.__version__) ``` #### macOS 系统下的注意事项 目前官方文档并未明确提及对 macOS 原生的支持情况。如果需要在 macOS 上运行 RKNN-Toolkit2,则可能需借助虚拟机或者 Docker 来模拟兼容环境。具体步骤建议参考 Linux 方式的说明,并结合实际测试调整配置参数。 --- ### 示例代码片段 下面提供一段简单的 Python 测试脚本以展示如何加载 RKNN Toolkit API 并打印当前库版本号。 ```python try: from rknn.api import RKNN except ImportError as e: raise Exception('Failed to load RKNN module.') from e print(f'Loaded RKNN version: {RKNN.__version__}') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值