论文阅读笔记(2):Multi-view attributed graph clustering

文章介绍了MAGC框架,一种处理多视图属性和多个图形数据的图聚类方法。MAGC利用图滤波技术而非深度学习,以平滑节点表示,探索高阶关系,并通过交替优化策略求解。实验显示,MAGC在效率和性能上优于其他先进方法。
摘要由CSDN通过智能技术生成

论文阅读笔记(2):Multi-view attributed graph clustering

本文主要记录在阅读《Multi-view attributed graph clustering》文献中的一些理解与翻译;
论文链接: https://www.researchgate.net/publication/353747180_Multi_view_Attributed_Graph_Clustering.

摘要

多视图图聚类是近年来研究的热点,目前的方法仍然局限于两个方面:
1、无法处理同时具有属性和图形的数据;2、许多先进的模型要么是浅模型要么是深模型,浅层模型缺少对复杂数据建模的能力,而深层方法设计大量参数并在运行时间和空间方面训练成本高昂;
在本文中,提出一种新的多视图属性图聚类框架,利用节点属性和图,创新点主要在三个方面:1)利用图滤波技术实现平滑的节点表示,而不是深度神经网络;2)原始图可能有噪声或者不完整,不能直接适用,通过考虑异构视图从学习中学习一致性图;3)设计一个新的正则化式子,以灵活的方式探索高阶式子;

介绍

1、 基于图形自动编码网络O2MA,利用一个信息丰富的图形视图和内容数据来学习节点嵌入,从而构建多个图形视图;
2、 MA

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值