卷积神经网络(CNN)是一类在深度学习中广泛应用的神经网络架构。近年来,CNN的架构不断演化和改进,以适应各种计算机视觉任务的需求。本文将介绍几个常见的CNN架构变体,并探讨它们在实际应用中的优势和适用场景。
一、LeNet-5
LeNet-5是CNN的一个经典架构,最早用于手写数字识别任务。它采用了卷积层、池化层和全连接层的组合,并使用激活函数和正则化技术提高了模型的性能。LeNet-5的设计思想为后续的CNN架构提供了重要的启示。
二、Alex Net
Alex Net是CNN在计算机视觉领域取得突破性进展的里程碑。它采用了更深的网络结构和更大尺寸的卷积核,通过使用ReLU激活函数和Dropout正则化技术,显著提升了模型的准确性。Alex Net的成功证明了深度神经网络的潜力,并为后续的研究提供了动力。
三、VGG Net
VGG Net是一个非常深的CNN架构,以其简洁而易于理解的设计而闻名。它采用了多个小尺寸的卷积核和堆叠的卷积层

本文介绍了卷积神经网络(CNN)的发展历程,包括LeNet-5、AlexNet、VGGNet、GoogLeNet、ResNet、DenseNet、MobileNet和EfficientNet等经典和创新架构。这些网络在深度学习中发挥着关键作用,解决了不同任务下的性能和效率问题。
最低0.47元/天 解锁文章
977

被折叠的 条评论
为什么被折叠?



