实验内容
卷积神经网络(CNN)因为其能够自动抽取图像的浅层到深层的特征,所以在近几年有许多应用。实验尝试使用深度学习框架Tensorflow,用AlexNet、ResNet两种CNN来对MNIST手写数据集进行图像分类。
实验原理
公式

ReLU Nonlinearity(Rectified Linear Unit)
卷积层使用ReLU代替sigmoid作为激活函数,加快收敛速度。Rectify指取不小于0的数。
f ( x ) = m a x ( 0 , x ) f(x)=max(0,x) f(x)=max(0,x)
Local Response Normalization(局部响应归一化)
在神经网络中,我们用激活函数将神经元的输出做一个非线性映射,但是ReLU激活函数得到的值域没有一个区间,所以要对ReLU得到的结果进行归一化,也就是Local Response Normalization。局部响应归一化的方法如下面的公式:
k = 2 , n = 5 , α

本文介绍了使用Tensorflow框架,基于CNN(如AlexNet)和ResNet进行MNIST手写数据集图像分类的实验。实验涉及ReLU激活函数、局部响应归一化以及AlexNet和ResNet的网络结构。AlexNet包括5个卷积层和3个全连接层,而ResNet利用残差结构解决深度学习中的退化问题,提高模型准确性。实验结果显示,ResNet的测试准确度高达0.9733。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



