白板机器学习推导系列(频率学派vs贝叶斯学派)学习笔记(二)

本文介绍了机器学习中的频率派和贝叶斯派的理论基础。频率派关注未知常量θ的估计,利用极大似然估计进行参数估计,并将机器学习视为最优化问题。而贝叶斯学派则视θ为随机变量,采用最大后验概率估计(MAP),并通过贝叶斯定理进行预测。贝叶斯方法在概率图模型中尤为重要,涉及积分计算。
摘要由CSDN通过智能技术生成

频率派 vs 贝叶斯派

  • X:data -> X = ( x 1 , x 2 , . . . , x N ) N ∗ P T X = (x_1, x_2, ..., x_N)^T_{N*P} X=(x1,x2,...,xN)NPT
    在这里插入图片描述
  • θ \theta θ:parameter
  • 假设 x ∽ p ( x ∣ θ ) x{\backsim}p(x|\theta) xp(xθ):x服从 p ( x ∣ θ ) p(x|\theta) p(xθ),这是概率模型
频率学派
  • 频率派认为: θ \theta θ是一个未知的常量,X是一个随机变量;关心的数据,需要估计 θ {\theta} θ,常用极大似然估计: θ M L E = arg max ⁡ θ l o g P ( x ∣ θ ) {\theta}_{MLE}={\argmax_\theta}logP(x|\theta) θMLE=θargmaxlogP(xθ) = arg max ⁡ θ £ ( θ ) \argmax_\theta{\pounds(\theta)} θargmax£(θ)
  • 每个样本 x i x_i xi独立同分布(iid)服从 P ( x ∣ θ ) P(x|\theta) P(xθ) P ( X ∣ θ ) P(X|\theta) P(Xθ) = ∏ i = 1 n P ( x i ∣ θ ) \prod_{i=1}^nP(x_i|\theta) i=1nP(xiθ),加上log用于简化运算。
  • 频率派->统计机器学习->最优化问题:1、设计模型;2、定义loss function; 3、梯度下降。
贝叶斯学派
  • 贝叶斯学派认为: θ \theta θ也是一个随机变量, θ ∽ p ( θ ) \theta\backsim{p(\theta)} θp(θ) p ( θ ) p(\theta) p(θ)一般称为先验。借助贝叶斯定理,把参数的先验和后验用似然联系起来。
  • 贝叶斯定理:
    在这里插入图片描述
  • MAP(最大后验概率估计): θ M A P = arg max ⁡ θ P ( θ ∣ x ) = arg max ⁡ θ P ( x ∣ θ ) P ( θ ) \theta_{MAP}=\argmax_{\theta}P(\theta|x)=\argmax_{\theta}P(x|\theta)P(\theta) θMAP=θargmaxP(θx)=θargmaxP(xθ)P(θ)
    在这里插入图片描述
  • 贝叶斯预测:X,来了个新样本 x p x_p xp,预测问题就是要求:
    在这里插入图片描述
  • 贝叶斯->概率图模型,最重要的就是求积分。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值