机器学习笔记七:损失函数与风险函数

本文深入探讨了机器学习中的损失函数,包括0-1损失、平方损失、对数损失和指数损失,解析其优缺点及应用场景。同时,介绍了风险函数的概念,如经验风险和结构风险,讨论了它们在防止过拟合中的作用。
摘要由CSDN通过智能技术生成

一.损失函数

回顾之前讲过的线性回归模型,我们为了要学习参数使得得到的直线更好的拟合数据,我们使用了一个函数
这里写图片描述

这个函数就是比较模型得到的结果和“真实值”之间的“差距”,来判断这个模型是不是好。因为模型越好,差距越小,就越能够反应真实值。这个是能够很容易理解的。
但是上面的解释毕竟太过于“通俗”,而且事实上面还存在很多的损失函数的类型供我们使用,你甚至能够定义自己的损失函数类型。所以下面的篇幅就来讲讲一些常用的损失函数。

Ⅰ.0-1损失函数(0-1 loss function)

这里写图片描述

这个函数比较好理解。要是我们模型得到值和“真实值(标签值)”不一样,损失为1.要是一样的话,没有损失,自然为0.
这个函数的优点就是简单,非常的简单。但

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值