Data Augmentation 数据增强

本文探讨了图像处理中的数据增强技术,包括翻转、旋转、缩放、裁剪、移位、高斯噪声和错切等,这些方法能增加数据多样性,提高算法鲁棒性。同时,介绍了简单的插值方法,并强调了处理低质量图像的重要性。高级技术如条件GAN和风格转移虽增强效果显著,但计算成本较高。数据增强对于大量数据集同样有效,能进一步提升算法性能。
摘要由CSDN通过智能技术生成

数据增强往往需要考虑图像的边界之外的元素,通常需要插入一些值。

 

1、翻转(Flip)

水平和垂直翻转,翻转后的图像大小与原来的图像大小相同,不需要对图像的边界进行插值或者其他操作。

 

2、旋转(Rotation)

旋转很可能会导致图像的大小前后不一致(一些精细角度的旋转)。

 

3、缩放比例(Scale)

向外缩放时,最终的图像尺寸将大于原始的图像尺寸,需要进项裁剪操作;向内缩放时,图像尺寸将小于原来的尺寸,需要进行边界的填充。

 

4、裁剪(Crop)

从原来的图像中随机抽样一部分,然后将此部分的大小重新调整为原始图像的大小。

 

5、移位(Translation)

移位只涉及X或者Y方向移动图像,使得大多数对象可以位于图像的任何位置,使得卷积神经网络可以看到图像中的所有角落。

 

6、高斯噪声(Gaussian Noise)

当神经网络开始学习无用的高频的噪声特征时,通常容易发生过拟合。均值为零的高斯噪声基本上在所有频率中具有数据点,从而有效的扭曲高频特征,意味着较低频率的组件(一般是预期的数据)也会失真,适量增加噪声可以使神经网络超越噪声,增强学习能力。

 

7、错切(shearing)

图像以它的中心垂直轴不变动的变形方式,是特殊类型的线性变换。

 

 

对于增强后的图像,最简单的插值方法有(1)常数(2)边界值  (3)反射,图像像素沿着图像的边界反射  (4)对称 ,与反射类似

 

-----------------------------------------------------------------------------------------------------------------------------------------------------------

一些高级图像增强技术,比如条件GAN和风格转移,可以增强对光照和季节的变化, 但是计算量比较大。

总的来说,原来非常相似的图像经过增强后,会变得非常不同,增加了数据的多样性,有助于算法的鲁棒性。即使数据集本身的数据量已经很大,经过数据增强后,算法的效果依然能够得到提升。

 

注: 如果数据集中有部分图像质量较差,如分辨率低,或者 噪声明显,建议剔除这部分数据,否则可能会影响模型效果。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xieshangxin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值