最小二乘主要用来做线性回归。
数据集形式为:(X,T),X ,T 分别代表自变量与因变量。用矩阵来表示训练数据时,往往每行代表一个数据。假设w 是回归系数,与x的维数相同。那么最小二乘估计形式为: ,L是loss function,包含了训练数据的所有误差,把误差分散在每个训练数据上。L(W)展开后的形式为:
。对展开式关于W求导后令倒数为0,得到
这就是回归系数的解析解。
下面我们看下几何解释:
最小二乘主要用来做线性回归。
数据集形式为:(X,T),X ,T 分别代表自变量与因变量。用矩阵来表示训练数据时,往往每行代表一个数据。假设w 是回归系数,与x的维数相同。那么最小二乘估计形式为: ,L是loss function,包含了训练数据的所有误差,把误差分散在每个训练数据上。L(W)展开后的形式为:
。对展开式关于W求导后令倒数为0,得到
这就是回归系数的解析解。
下面我们看下几何解释: