概率观点看最小二乘

本文从概率角度探讨数据拟合中的最小二乘法,指出误差源于数据的随机性,噪声假设服从高斯分布。通过最大似然估计,推导出最小二乘法的优化过程,揭示最小二乘法内在的统计假设。
摘要由CSDN通过智能技术生成

对于数据拟合而言,误差来源于数据的随机性,也就是说,我们的训练数据是带有噪声的,现在假设,噪声服从高斯分布\varepsilon \sim N(0,\sigma ^{2}), 所以有Y= W^{T}X + \epsilon   令f(X)=W^{T}X   所以条件概率   Y|X,W \sim N(W^{T}X,\sigma ^{2})))。  假设样本数独立同分布的,使用最大似然估计MLE,  L(w) = logp(Y|X,W), 将各个样本带入,并展开,消去一些与W优化无关的项,便可以得到 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xieshangxin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值