论文阅读_大模型优化_DeepSeek-V2

英文名称: DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model
中文名称: DeepSeek-V2:强大、经济高效的专家混合语言模型
链接: http://arxiv.org/abs/2405.04434v2
代码: https://github.com/deepseek-ai/DeepSeek-V2
作者: DeepSeek-AI
机构: DeepSeek-AI 深度探索公司
日期: 2024-05-07

1 读后感

DeepSeek 最近推出的 V2 版本,无疑是当前性价比最高的选择。直观地讲:KIMI 的价格是 12 元/M tokens,Chat 的价格约为 3.5 元/M,GPT 4o 的价格约为 35 元/M。然而,DeepSeek 的价格仅为 1 元/M(这是按照输入计算的,输出通常是输入的两倍,美元兑换按 7 计算)。

我在之前调研代码模型的时候就注意到 DeepSeek 的单模型在排名中很靠前。从论文和网站数据可以看到模型效果在开源领域,甚至在国内开源 + 闭源领域都算是很能打了,因为是一家中文公司,对中文也更加友好。从实验结果来看,它是一种对中文,英文,编码各方面水平比较均衡的模型。

DeepSeek 是一个开源模型,理论上可以在本地部署,但 MoE 的方式虽然快速,却占用大量内存,硬件成本也高。比起这样,购买他们的服务可能更划算。

本篇就来看看 DeepSeek 是如何实现降本增效的。

2 摘要

  • 目标:DeepSeek-V2 是一个 MoE 语言模型,其特点是经济高效的训练和推理。
  • 方法:DeepSeek-V2 采用了创新的架构,包括 Multi-head Latent Attention(MLA)和 DeepSeekMoE。MLA 通过将 Key-Value(KV)缓存显著压缩为潜在向量,确保了高效的推理;而 DeepSeekMoE 通过稀疏计算实现了经济高效的模型训练。
  • 结论:与 DeepSeek 67B 相比,DeepSeek-V2 表现更强,同时节省了 42.5% 的训练成本,将 KV 缓存减少了 93.3%,并将最大生成吞吐量提升了 5.76 倍。

图 -1,左侧展示模型的理解能力,右侧展示成本和效率的改进。

3 方法

3.1 模型参数

  • 总共包含了 236B 参数
  • 其中每个 token 激活的参数为 21B
  • 支持 128K 个 token 的上下文长度

3.2 架构改进

  • 对于前馈网络(FFN),采用细粒度的专家分割和共享的专家隔离,以提高专家专业化的潜力。论文阅读_MoE_Switch Transformers
  • 多头潜在注意力(MLA),配备低秩键值联合压缩的注意力机制。从而提高了推理效率,下面展开说明 MLA。
3.2.1 Multi-Head Latent Attention 多头潜在注意力

Attention的常见问题

多头注意力(MHA)的键值(KV)缓存(Vaswani et al.,2017)对推理 LLMs 效率构成了重大障碍。为了减少 KV 缓存,提出了多查询注意力(MQA)和分组查询注意力(GQA)。它们需要较小量级的 KV 缓存,但它们的表现不如 MHA。

这篇文章中提出了低秩键值结合压缩。

𝑐𝑡𝐾𝑉=𝑊𝐷𝐾𝑉ℎ𝑡,𝑘𝑡𝐶=𝑊𝑈𝐾𝑐𝑡𝐾𝑉,𝑣𝑡𝐶=𝑊𝑈𝑉𝑐𝑡𝐾𝑉,𝑐𝑡𝑄=𝑊𝐷𝑄ℎ𝑡,𝑞𝑡𝐶=𝑊𝑈𝑄𝑐𝑡𝑄,

简单地讲,就是先用矩阵 W^DKV 压缩,到 c 的维度,即潜空间,c 的维度相比 h 维度小很多,𝑑𝑐′(≪𝑑ℎ⁢𝑛ℎ),然后再计算 k,v 以及 q,在推理过程中,MLA 只需要缓存 𝐜𝑡𝐾⁢𝑉。这和 LORA 原理差不多,也使用了低秩分解,其背景的原理是注意力存在冗余,可被压缩,并且还有可能因为提纯而得到更好的效果。

对比几种优化注意力机制:

3.2.2 解耦旋转位置嵌入

为配合 MLA,使用解耦旋转位置嵌入 RoPE 策略。

3.3 训练数据

  • 构建了一个由 8.1T token 组成的高质量、多源的预训练语料库。
  • 尤其强调了中文数据的收集,并确保了数据的高质。
  • 为了执行 DeepSeek-V2 聊天的监督微调(SFT),我们收集了覆盖数学、代码、写作、推理、安全等各个领域的 1.5M 会话。
  • 遵循 DeepSeekMath(Shao et al.,2024)的方法,采用了组相对策略优化(GRPO),旨在使我们的模型更好地符合人类的偏好。

4 实验结果

主实验结果:

### DeepSeek-V2-Lite 技术文档下载与使用教程 #### 文档获取途径 为了获得关于 DeepSeek-V2-Lite 的最新技术文档,建议访问官方项目页面或 GitHub 仓库。通常这些位置会提供详细的安装指南、API 参考以及常见问题解答。如果存在特定版本的技术白皮书,则可能需要通过学术数据库或者会议论文集查询。 #### 安装环境准备 确保开发环境中已正确配置 Python 版本和其他依赖库。对于大多数机器学习框架而言,推荐使用虚拟环境管理工具如 `conda` 或者 `venv` 来隔离不同项目的依赖关系[^1]。 ```bash # 创建并激活 conda 虚拟环境 conda create -n deepseek_lite python=3.9 conda activate deepseek_lite ``` #### 数据预处理 数据清洗和转换是任何深度学习应用的重要组成部分。针对 DeepSeek-V2-Lite,在输入模型之前应当对原始文本执行分词、去除停用词等操作,并将其转化为适合模型理解的形式,比如整数索引序列或是嵌入向量表示法[^2]。 ```python from transformers import BertTokenizer tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') text = "This is an example sentence." tokens = tokenizer.encode(text, add_special_tokens=True) print(tokens) ``` #### 模型加载与推理 利用预训练权重初始化模型实例可以显著加快收敛过程并提高最终效果。下面展示了如何从 Hugging Face Model Hub 加载预先训练好的 DeepSeek-V2-Lite 模型来进行预测: ```python from transformers import AutoModelForSequenceClassification, pipeline model_name = 'deepseek-v2-lite' classifier = pipeline("sentiment-analysis", model=model_name) result = classifier(["I love this product!", "It was terrible."]) for res in result: print(res) ``` #### 性能调优技巧 当部署到生产环境时,可以通过调整批大小(batch size)、启用混合精度计算等方式进一步提升吞吐量而不牺牲太多准确性。此外,采用更高效的硬件加速器(GPU/TPU)也能带来明显的性能增益[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值