33. 下图表示某项目各个活动关系及乐观、 最可能、 最悲观完成时间,假设各活动的三种完成时间服从分布, 按照三点估算法该项目标准差为 3.2 天,则项目在 ( )完成的概率为 95%。
活动 | 紧前活动 | 乐观时间(天) | 最可能时间(天) | 悲观时间(天) |
A | - | 8 | 12 | 16 |
B | A | 15 | 18 | 27 |
C | - | 5 | 7 | 9 |
D | C | 11 | 13 | 14 |
E | B、D | 4 | 5 | 12 |
F | E | 5 | 13 | 15 |
A. 42.6 天 到 55.4天 B. 45.8 天 到 52.2 天
C. 61.4天 到 74.6 天 D. 64.7 天 到 71.3天
解析: 这题 关于 三点估算技术和正态分布。
期望工期 = (乐观时间 + 4 * 最可能时间 + 悲观时间)/ 6, 根据此公式计算出A、B、 C、 D、 E、 F的期望工期,分别为 A=12, B=19, C=7, D=12.8, E=6, F=12。
相应的图如下:
根据单代号网络图找出项目关键路径, 为A - B - E - F, 项目工期为 12 + 19 + 6 + 12 = 49天
根据题意 标准差 = 3.2天, 那么项目完成概率要95%,
工期应在(49-3.2*2, 49+3.2*2), 即(42.6, 55.4). 标准正态分布表如下所示:
答案: A