离散数学22_第8章图__握手定理

本文详细介绍了图论中的握手定理,包括无向图和有向图的情况,并通过若干例题展示了如何利用握手定理求解图的边数和其他度数问题。推论指出度数为奇数的结点个数为偶数,对于理解图的性质至关重要。此外,文章还探讨了正则图的概念,并强调了握手定理在理解图的顶点度数与边数关系中的关键作用。
摘要由CSDN通过智能技术生成

在图这一章,  要识记的限定、知识点很多

一  握手定理

图G = (V,  E) 为无向图或有向图,  G有n个结点,  e条边,  则所有结点的度数之和等于2倍e.

 

推论:  任何图(无向或有向),  度数为奇数的结点个数为偶数。

这个推论很重要, 经常用到。

 

二. 光说不练假把式, 看几个例题

例1:  图G中结点数n与边数m  相等,  2度与3度结点各2个,  其余结点均为悬挂结点,  求图G的边数。

解:  所谓悬挂结点,是指只有一条边连结的 结点。

       2x2 + 3x2 + (n-4)   = 2m

     又因为根据题意,结点数是等于边数,   n = m

  联立两方程,可解得,m=6.

所以, 图G有6条边。

例2:  无向图G有 8条边,  1个1度结点,  2个2度结点,  1个5度结点,  其余结点数均为3,  求3度结点个数。

解:  根据握手定理,  结点数 = 2倍的边数

         2x8 = 1 + 2x2 + 1x5 + a x 3

解得 a = 2

所以 3度结点有2个。

例3:  自然数序列 (3,3, 2, 2, 1) 和 (4, 2 ,2, 1, 1)能作为图的结点的度数序列吗? 

解:根据推论,  度数为奇数的结点个数为偶数

  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值