查看模型每层及总信息

import torch
from torch.nn import Module
from torchsummary import summary
class lrelu_conv_bn(Module):
    def __init__(self):
        super(lrelu_conv_bn,self).__init__()
        self.conv = torch.nn.ConvTranspose2d(1,1,kernel_size=4,stride=2,padding=1,bias=False)

    def forward(self,x):
        x = self.conv(x)
        return x

model = lrelu_conv_bn()
summary(model=model,input_size = (1,2,2),batch_size=1,device='cpu')

输出:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值