离散数学:理解二元谓词逻辑中的量词顺序的蕴含关系

前言

在日常生活中,我们经常使用量词来表达命题,尤其在逻辑学中,量词的顺序对于命题的解释至关重要。

笔者在学习离散数学这门课的过程中,二元谓词逻辑中量词的前后顺序这一主题常常让我感到困惑。每次考试前都是强行背诵下来,考试后就忘记了。

本文将通过一个案例,探讨存在量词和普遍量词在二元谓词中的前后顺序,以及这种顺序如何影响命题的含义,相信看完本文,遇到相关题目都不是问题啦


问题:谓词的三个基本蕴含式

在离散数学的课堂上,老师提到了存在量词和普遍量词在二元谓词中的顺序问题。

刚开始,我对这个概念感到有些摸不着头脑,不知道这究竟是什么意思。尤其是在解题时,我总是容易把顺序搞混,导致对问题的理解产生偏差。

如下图所示,我遇到了下面三个让我困惑的蕴含三兄弟,我曾经思考了好久,到底如何理清楚它们。

今天在复习的时候我想到了一个绝佳的案例用于理解这三个式子,故在此分享出来。
在这里插入图片描述

理清概念

第一点,理解谓词的前后顺序

首先,我们理清楚前后顺序分别表示什么,总结下来一句话:顺着读

在二元谓词中,量词的前后顺序可以影响句子的含义。

这主要涉及到普遍量词(Universal Quantifier)和存在量词(Existential Quantifier)的位置。

  1. 存在量词前于普遍量词 (∃x ∀y):

我们直接顺着读,即这种顺序表示存在一个元素 x,对于所有的元素 y 都满足某个性质。

例如,考虑命题:“存在一个正整数 x,在任何正整数 y 中, x 是 y 的因数”。这可以表示为∃x ∀y。

  1. 普遍量词前于存在量词 (∀y ∃x):

继续顺着读,这种顺序表示对于所有的元素 y,存在一个元素 x 满足某个性质。

例如,考虑命题:“对于任何人 y,存在一本书 x,这本书是 y 所写的”。这可以表示为∀y ∃x。

这两种顺序在语义上有显著的区别,因此在使用量词的时候需要根据具体的语境来确定顺序。

第二点,理解蕴含的定义

在定义上,所谓A蕴含B,即如果A取值为1,那么B一定取值为1,即如果A是真的,那么B一定为真。搞清楚这一点对我们下面案例的理解十分重要。

案例:加深理解

好,现在我们已经知道了量词前后顺序的基本区别,那么回到上面的蕴含三兄弟,我们如何记住他们呢?

这里我举一个小案例,帮助大家记忆蕴含三兄弟。

假设x表示某个人,y表示某种编程语言,A(x,y)表示x擅长y编程语言。为了方便,我们令论域为,x:小红、小明、小李,y:Python、C++、Java。

那么,第一个表达式(∀x)(∀y)A(x, y) 可以翻译为:对于任何一个人,ta都擅长任意一门编程语言。也就是说,小红、小明和小李三人都擅长Java + Cpp + Python。

对于第二个表达式( ∃y) (∀x)A(x, y)可以翻译为:存在一门编程语言,任何人都擅长它

不妨假设这门语言为C++,那么第一个表达式为真,既然任何人擅长任何语言,那么任何人肯定都擅长C++,因此第一个表达式蕴含第二个表达式,没问题。

对于第三个表达式(∀x) (∃y)A(x, y),可以翻译为:对于任何一个人,一定存在一门编程语言是ta擅长的。既然任何人都擅长C++,那么对于每个人,肯定至少有一门编程语言是ta擅长的,没问题。

对于第四个表达式(∃x) (∃y)A(x, y),可以翻译为:存在某个人,ta擅长某门编程语言。这也是可以从第三个表达式推过来的,肯定是成立的。

反推不成立

而反推是不成立的,存在某个人,ta擅长某门编程语言,不一定对于任何一个人,一定存在一门编程语言是ta擅长的,同理知无法反推其余的表达式。

至此,我们就完成了对二元谓词逻辑中的量词顺序的蕴含关系的理解。
希望对大家有所帮助。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值