论文《Attentive Recurrent Social Recommendation》阅读

论文概况

这篇论文是合工大吴乐老师组发表在SIGIR 2018上关于时序性推荐系统方向的一篇文章。这篇文章结合了RNN、Attention和Social Recommendation三个方向,完成了一个基于动态和静态两类注意力网络的时序性的推荐系统,提出了模型ARSE。

论文地址:ARSE

论文代码未公开

Introduciton

根据Introduction部分的内容我们大概能了解文章的创新点。这里我们首先介绍一下,在推荐系统方向,General Recommendation 算法主要是结合一些环境特征(context information)或者user/item的特征去进行推荐,完成矩阵补全(Matrix Completion)问题或二部图的预测(Bipartite Graph Prediction)问题。但是这类方法主要的缺点是数据稀疏性问题,为解决这一问题,就有了利用user-user关系的社交推荐(Social Recommendation),Social Recommendation基于邻居节点会互相影响的假设。另外,基于用户的兴趣会不断变化,提出Sequential Recommendation方向,就是用户的latent factor不是静态的,而是会随着时间变化而不断变化,因此处理的数据就不只是一个interaction matrix而是若干个(随时间长短变化)。处理Sequential RS问题,就涉及到了序列的学习,可以通过诸如RNN、LSTM等模型进行学习,本文即选用LSTM来完成序列的学习。

下面我们按照段落介绍:

段落内容
Paragraph.1CF(Collaborative Filtering,协同过滤)一直以来都是推荐系统方向的主流,但是有着Data Sparsity的缺陷
Paragraph.2使用社交网络可以缓解Data Sparsity问题,可以使用Social Recommendation
Paragraph.3静态地描述用户属性不符合事实,因为用户的兴趣在一直变化,可以使用Sequential Recommendation/ Dynamic Recommendation,也就是随时间变化的时序性问题
Paragraph.4解决时序性问题,RNN可以提供解决方案。而在推荐系统方面,还没有RNN在推荐上的应用。
Paragraph.5综上,本文提出了一个Attentive RNN网络来解决时序性的社交问题。

因此,我们可以看到本文的亮点主要集中在Attention + RNN + Social RS以及几个元素的组合上。

Problem Definition and Preliminaries

问题形式化:给定user集合 U    ( ∣ U ∣ = M ) U \ \ (|U|=M) U  (U=M),item集合 V    ( ∣ V ∣ = N ) V\ \ (|V|=N) V  (V=N),user-user的社交网络矩阵 S ∈ R M × N S\in\mathbb{R}^{M\times N} SRM×N S S S是静态的,不随时间变化的,即好友关系保持不变),交互矩阵集合 R = [ R 1 , R 2 , ⋯   , R T ] R = [R^1, R^2, \cdots, R^T] R=[R1,R2,,RT] ,其中 t t t 时刻的交互矩阵(interaction matrix) R t ∈ R M × N    ( t ∈ { 1 , 2 , ⋯   , T } ) R^t \in \mathbb{R}^{M\times N} \ \ (t\in \{1, 2, \cdots, T\}) RtRM×N  (t{1,2,,T}) ;需要预测的是 T + 1 T+1 T+1 时刻的交互矩阵 R ^ T + 1 \hat{R}^{T+1} R^T+1

Preliminary

作者在这部分中介绍了LSTM模型的大致细节。这里贴张图,用于大家大致参考。
LSTM

这里需要注意的是,在LSTM每一步的输入中, h t − 1 h_{t-1} ht1表示上一步的隐藏状态vector,本次输入的向量input vector x t x_t xt在输入LSTM内部前,先进行向量拼接(concatenation)再输入模型。

The Proposed Model

作者将ARSE分为两部分,DARSE(Dynamic Attentive Recurrent Social rEcommendation,动态注意力循环社交推荐) 和 SARSE (Static Attentive Recurrent Social rEcommendation,静态注意力循环社交推荐)。 DARSE考虑随时间变化而变化的部分;而SARSE考虑的是静态的部分。预测结果是两者的简单相加。

需要注意的是,在这里的Table 1,有一点引起人困扰的是 Q Q Q W W W P P P 分别表示item动态latent matrix、item静态latent matrix、user静态latent matrix,user的动态latent matrix不需要吗?这里需要说明的是,user的动态latent matrix不只一个,而是有T个。可以表示为 H t ∣ t = 1 , 2 , ⋯   , T H^t |t=1, 2, \cdots, T Htt=1,2,,T。这里之所以有多个 H t H^t Ht,是因为用户兴趣随时间而变化,因此需要有多个放到LSTM中。 H t H^t Ht 中的每一行 h a t ∈ R D h_a^t \in \mathbb{R}^{D} hatRD 就是任意用户 a a a t t t 时刻的的latent vector,同时也是LSTM的hidden state vector。这里我们应该就可以看出Collaborative Filtering 和 LSTM 是如何结合起来的。

而item和用户的静态属性都是不随时间变化的,因此不需要改变。另外, x a t x_a^t xat 并不对应到一个矩阵 X t X^t Xt,这里的 x a t x_a^t xat 是通过对矩阵 Q Q Q 中的某一行进行选择得到的,具体的,后文进行详细介绍。

这里需要声明一点的是,Table 1中应该有一个书写小错误,这里的矩阵 P P P 应该大小是 D × M D \times M D×M,而不是 D × N D \times N D×N,欢迎评论区讨论指正。

The General Framework

首先,我们给出预测的 r ^ a i t \hat{r}_{ai}^t r^ait 的计算公式:
r ^ a i t = r ^ D , a i t + r ^ S , a i t = q i T h a t + w i T p ~ a (5) \hat{r}_{ai}^t = \hat{r}_{D, ai}^t+ \hat{r}_{S,ai}^t = {q}_{i}^\mathsf{T} h_a^t + {w}_{i}^\mathsf{T} \tilde{p}_a \tag{5} r^ait=r^D,ait+r^S,ait=qiThat+wiTp~a(5)

这里需要注意的是, T ^\mathsf{T} T 是矩阵的转置符号,在原文中用   ′ \ ^{'}   表示。

q i {q}_{i} qi 表示 item i i i 的dynamic latent vector。
h a t h_a^t hat 表示 user a a a 在时刻 t t t 的dynamic latent vector。
w i {w}_{i} wi 表示 item i i i 的 static latent vector。
p ~ a \tilde{p}_a p~a 表示 user a a a 的static latent vector。
这里之所以 p ~ a \tilde{p}_a p~a上有波浪符号,是因为这是在集成了 p a {p}_a pa vector本身和注意力加权的邻接节点vector之后的表示,看下图也可以大概看明白。

ARSE

由架构图我们也可以看出来,静态的user只和静态的item进行向量之间的内积计算,动态的user只和动态的item进行内积计算。

Dynamic Attentive Social Recurrent Recommendation

动态的部分简称为DARSE,作者认为每个人的喜好变化会影响社交关系的亲疏远近;同样,社交关系的变化也会影响每个人的喜好变化,这其中是interplay的关系。

作者一共分成了三层,我们分别介绍如下:

Input Pooling Layer

x a t = P o o l i n g ( Q ( : , L a t ) ) (6) x_a^t = Pooling(Q(:, L_a^t)) \tag{6} xat=Pooling(Q(:,Lat))(6)

这一步的目的是为了把任意用户在任意时刻变长的喜欢列表 L a t L_a^t Lat 变为定长以方便后续LSTM处理。这里形成了用户 a a a 在时刻 t t t 的固定大小的向量表示 x a t x_a^t xat,代表了用户 a a a 在时刻 t t t 的喜好特征,也是后续LSTM的输入向量。这里的 Q ( : , L a t ) Q(:, L_a^t) Q(:,Lat) 就是一个切片处理,把用户 a a a 的喜好item对应的列取出来进行压缩处理,得到一个D维的向量。

Dynamic Attentive Network

这里是为了得到用户 a a a 的邻居节点的环境向量 h ~ a t \tilde{h}_a^t h~at h ~ a t \tilde{h}_a^t h~at 是任意与 a a a 相邻的用户 b    ( b ∈ S a ) b \ \ (b\in S_a) b  (bSa) 在时刻 t t t 的动态向量 h b t {h}_b^t hbt 的注意力加权之和。那么问题来了,注意力怎么算呢?公式如下:

α a b t = exp ⁡ ( m t ( a , b ) ) ∑ c ∈ S a exp ⁡ ( m t ( a , c ) ) (7) \alpha_{ab}^t = \frac{\exp(m^t(a,b))}{\sum_{c\in S_a}{\exp(m^t(a,c))}} \tag{7} αabt=cSaexp(mt(a,c))exp(mt(a,b))(7)
m t ( a , c ) = R e L U ( A 5 × R e L U ( A 1 × h a t − 1 + A 2 × h c t − 1 + A 3 × e a + A 4 × e c ) ) (8) m^t(a,c)=ReLU(A_5 \times ReLU(A_1 \times h_a^{t-1} + A_2 \times h_c^{t-1} + A_3 \times e_a + A_4 \times e_c)) \tag{8} mt(a,c)=ReLU(A5×ReLU(A1×hat1+A2×hct1+A3×ea+A4×ec))(8)
可以看到,这里的注意力系数 α a b t \alpha_{ab}^t αabt 就是 m t ( a , c ) m^t(a,c) mt(a,c)的归一化值,而 m t ( a , c ) m^t(a,c) mt(a,c) 就是一个双层的MLP计算完成的,通过 a a a t − 1 t-1 t1 时刻的动态向量、 a a a 的相邻用户 c c c t − 1 t-1 t1 时刻的动态向量、 a a a 的结构embedding、 c c c 的结构embedding计算完成。这里, e a e_a ea e c e_c ec a a a c c c 的图节点embedding(文中使用denosing autoEncoder完成)。我们可以看到 t t t 时刻动态注意力是由节点及其邻居节点的结构特征和 t − 1 t-1 t1 时刻的latent向量(代表用户的兴趣特征)共同决定的。

有了上面的注意力权重,就可以计算每个节点 a a a 的社交上下文信息(social contextual informaiton),形式上是加权的邻接节点动态社交影响力之和(weighted dynamic social influence from social neighbors),如下式所示:

h ~ a t = ∑ b ∈ S a α a b t × h b t (10) \tilde{h}_a^t = \sum_{b\in{S_a}} \alpha_{ab}^{t} \times h_b^t \tag{10} h~at=bSaαabt×hbt(10)

Social LSTM Layer

这一层是将上文中在Input Pooling Layer中学到的节点喜好向量 x a t x_a^t xat 和Dynamic Attentive Network层学到的节点环境向量 h ~ a t − 1 \tilde{h}_a^{t-1} h~at1 输入LSTM模型中,用下式中的 f L S T M ( ⋅ ) f_{LSTM} (\cdot) fLSTM() 表示。

h a t = f L S T M ( [ x a t , h a t − 1 , h ~ a t − 1 ] ) (11) h_a^t = f_{LSTM}([x_a^t, h_a^{t-1}, \tilde{h}_a^{t-1}]) \tag{11} hat=fLSTM([xat,hat1,h~at1])(11)

上式中, h a t − 1 h_a^{t-1} hat1 是上一时刻的LSTM hidden state vector,将 x a t x_a^t xat h ~ a t − 1 \tilde{h}_a^{t-1} h~at1 进行拼接后作为input vector,可以得到下一时刻的hidden state vector h a t h_a^t hat ,这也是用户 a a a 在时刻 t t t 的dynamic latent vector。

Dynamic Output Layer

这里不做过多解释,使用向量内积完成动态部分的输出计算。

r ^ D , a i t = q i T ⋅ h a t \hat{r}_{D, ai}^t = q_i^{\mathsf{T}} \cdot h_a^t r^D,ait=qiThat

Static Attentive Social Recurrent Recommendation

Dynamic解释清楚以后,这部分就不用做过多解释了,SARSE就是一个加了注意力的Collaborative Filtering模型。具体如下:

r ^ S , a i t = w i T ⋅ p ~ a (17) \hat{r}_{S, ai}^t = w_i^{\mathsf{T}} \cdot \tilde{p}_a \tag{17} r^S,ait=wiTp~a(17)

n t ( a , c ) = R e L U ( B 5 × R e L U ( B 1 × p a + B 2 × p c + B 3 × e a + B 4 × e c ) ) (14) n^t(a,c)=ReLU(B_5 \times ReLU(B_1 \times p_a + B_2 \times p_c + B_3 \times e_a + B_4 \times e_c)) \tag{14} nt(a,c)=ReLU(B5×ReLU(B1×pa+B2×pc+B3×ea+B4×ec))(14)

β a b = exp ⁡ ( n t ( a , b ) ) ∑ c ∈ S a exp ⁡ ( n t ( a , c ) ) (15) \beta_{ab} = \frac{\exp(n^t(a,b))}{\sum_{c\in S_a}{\exp(n^t(a,c))}} \tag{15} βab=cSaexp(nt(a,c))exp(nt(a,b))(15)

p ~ a = ∑ b ∈ S a β a b × p b + p a \tilde{p}_a = \sum_{b\in S_a}{\beta_{ab} \times p_b + p_a} p~a=bSaβab×pb+pa

这里需要注意的是,最终在SARSE的预测输出中使用的向量是 p ~ a \tilde{p}_a p~a 而不是 p a p_a pa ,这里用的是注意力计算完成后由 p a p_a pa 和其邻接节点的静态向量加权求和后的向量加和计算完成。

Model Training

L Θ ( R , R ^ ) = − ∑ t = 1 T ∑ a = 1 M ∑ i = 1 N [ r a i t log ⁡ ( r ^ a i t ) + ( 1 − r a i t ) log ⁡ ( 1 − r ^ a i t ) ] (18) L_{\Theta}(R, \hat R) = -\sum\limits_{t=1}^{T} \sum\limits_{a=1}^{M} \sum\limits_{i=1}^{N} [ r_{ai}^t \log(\hat{r}_{ai}^t) + (1-r_{ai}^t) \log(1-\hat{r}_{ai}^t) ] \tag{18} LΘ(R,R^)=t=1Ta=1Mi=1N[raitlog(r^ait)+(1rait)log(1r^ait)](18)

使用二分类的log loss损失函数进行训练。

论文总结

这篇文章提出了一个ARSE模型,使用注意力机制、LSTM模型和social Recommendation相结合的方式,结合使用了静态注意力和动态注意力,值得推荐。

稍微有点瑕疵的部分就是本文的参考文献部分年份都稍微有点久远[笑哭],除此以外,都是惊喜。

  • 3
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值