论文《Graph Neural Networks for Social Recommendation》阅读

论文概况

本文是香港城市大学联合京东发表在WWW 2019上的一篇论文,CCF A会议,提出了模型GraphRec。这篇文章聚焦于社会化推荐(Social Recommendation),是社会化推荐较早的作品之一。

Introduction

论文解决三个问题:

  1. user-item的显式交互包含不同分数(文中称之为意见,opinion),不同的分数代表不同的喜好,如何处理?
  2. user和user之间的社交关系也有亲疏远近之分,不应该有连边就进行平均处理,如何体现?
  3. user同时包含在use-item的交互和user-user的社交关系中,如何处理?

针对这三个问题,作者进行了GraphRec模型的设计。

GraphRec模型介绍

GraphRec

GraphRec可以分为两部分,User Modeling和Item Modeling,其中User Modeling又分为Item Aggregation和Social Aggregation,下面分别介绍。

User Modeling

Item Aggregation

Item Aggregation 这里是指通过user-item的交互矩阵进行用户在item-space的分解。

具体的,如下式所示,这里我们使用相对容易理解的符号进行重新书写,对文中一些不太友好的符号表示也进行了重新表示:

h i I = σ ( W ⋅ A g g i t e m s ( { x i a ∣ ∀ a ∈ C i } ) + b ) σ ( W ⋅ { ∑ a ∈ C ( i ) α i a x i a } + b ) h_i^I = \sigma (W \cdot Agg_{items}(\{x_{ia} | \forall a \in C_i \}) +b) \\ \sigma(W\cdot\{\sum_{a\in C(i)}\alpha_{ia} x_{ia}\} + b) hiI=σ(WAggitems({xiaaCi})+b)σ(W{aC(i)αiaxia}+b)

这里, h i I h_i^I hiI就表示item空间用户 i i i的embedding表示, A g g i t e m s ( ⋅ ) Agg_{items}(\cdot) Aggitems()表示item-space的聚合函数,可以看到使用加权求和并线性变换的方式进行表示,其中, α i a \alpha_{ia} αia表示权重, x i a x_{ia} xia表示用户 i i i和与其邻接的物品 a a a的聚合向量, C i C_i Ci表示用户 i i i在item-space中与其邻接的所有物品集合。见下式:

x i a = g v ( [ q a ∣ ∣ e r ] ) x_{ia} = g_v([q_a || e_r]) xia=gv([qaer])
x i a x_{ia} xia使用物品 a a a和评分等级 r r r的可训练向量进行表示, g v ( ⋅ ) g_v(\cdot) gv()表示融合函数,文中这里没有交代清楚,联系后文,应该是一个三层的MLP网络。

注意力系数 α i a \alpha_{ia} αia如下面两式所示

α i a ∗ = w 2 T ⋅ σ ( W 1 ⋅ [ x i a ∣ ∣ p i ] + b 1 1 ) + b 2 \alpha_{ia}^* = w_2^T \cdot \sigma(W_1 \cdot [x_{ia} || p_i] + b_11) + b_2 αia=w2Tσ(W1[xiapi]+b11)+b2

α i a = exp ⁡ ( α i a ∗ ) ∑ c ∈ C i α i c ∗ \alpha_{ia} = \frac{\exp(\alpha_{ia}^*)}{ \sum_{c \in C_i} {\alpha_{ic}^*} } αia=cCiαicexp(αia)

可以看到,用户 i i i和与其邻接的物品 a a a的之间的注意力系数通过双层MLP进行计算,输入包括 x i a x_{ia} xia p i p_i pi,因此可以理解为用户 i i i和与其邻接的物品 a a a之间的亲和力(affinity)指数。

Social Aggregation

后面的部分可以参考前面,我们不进行太详细的介绍,大致方式相同。

h i S = σ ( W ⋅ A g g n e i g h b o r s ( { h o I ∣ ∀ o ∈ N i } ) + b ) σ ( W ⋅ { ∑ o ∈ N ( i ) β i o h o I } + b ) h_i^S = \sigma (W \cdot Agg_{neighbors}(\{h_{o}^{I} | \forall o \in N_i \}) +b) \\ \sigma(W\cdot\{\sum_{o\in N(i)}\beta_{io} h_{o}^I\} + b) hiS=σ(WAggneighbors({hoIoNi})+b)σ(W{oN(i)βiohoI}+b)

类似的, h i S h_i^S hiS就表示social空间用户 i i i的embedding表示, A g g n e i g h b o r s ( ⋅ ) Agg_{neighbors}(\cdot) Aggneighbors()表示social-space的聚合函数,可以看到使用加权求和并线性变换的方式进行表示,其中, β i o \beta_{io} βio表示权重, h o I h_o^I hoI是item-space完成的用户 o o o的item-space向量表示, N i N_i Ni表示用户 i i i在social-space中与其邻接的所有用户集合。具体的计算方式和Item Aggregation一样,篇幅原因,不一而足。

h i h_i hi表示最终的用户 i i i的向量表示,先通过连接 h i S h_i^S hiS h i I h_i^I hiI,再通过多层感知机进行变换得到。

需要指出的是,这里的权重矩阵和向量如 W W W b b b等应该是不同的,在计算过程中应该进行区分,上面为了方便理解,没有进行更多的区分。

Item Modeling

直接在用户-物品的交互矩阵中进行提取,使用 z j z_j zj进行表示, A g g u s e r s Agg_{users} Aggusers是其聚合函数, μ j t \mu_{jt} μjt表示注意力系数。

Rating Prediction和Model Training

使用MLP,先通过 h i h_i hi z j z_j zj的concatenation,然后通过多层感知机进行非线性变换得到最终的预测结果。

损失函数使用均方误差MSE进行表示,针对训练过程,一个三元组 ( i , j , r ) (i, j, r) (i,j,r)表示用户 i i i对物品 j j j进行评分,评分为 r r r,其中用户向量 h i h_i hi、物品向量 z j z_j zj、评分向量 e r e_r er都是随机初始化的可训练参数,除此以外各种MLP中的 W W W b b b也是可训练参数,共同构成训练参数。

总结一下

针对开头提出的三个问题,现总结如下:

  1. 不同分数代表用户的不同意见,作者使用意见向量 e r e_r er进行表示,从而可以针对不同评分计算不同的意见注意力分数。
  2. user和user之间,通过social aggregation时使用不同user之间的注意力分数 β i o \beta_{io} βio进行计算
  3. user两方面的属性,分别通过social space和item space进行计算,具体的,先通过item space的评分矩阵得到每个用户的item space表示 h o I h_o^I hoI,将上面的item space表示 h o I h_o^I hoI放进social space,完成用户之间的属性传播。

一点不成熟的评价

本文从社交网络和推荐交互图两部分进行学习,完成社会化推荐任务,值得一读。但是本人认为有以下几点需要注意一下:

  1. 文章中的数学符号比较乱,容易混淆
  2. 论文最后的related work含金量不高,基本没有GNN based social recommendation的相关论文,列举的方法都是比较久远的矩阵分解一类的方法,可以略过。
  3. 公式中一些不规范表达需要注意一下
  • 4
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
混合图神经网络用于少样本学习。少样本学习是指在给定的样本数量非常有限的情况下,如何进行有效的学习和分类任务。混合图神经网络是一种结合了图神经网络和其他模型的方法,用于解决少样本学习问题。 首先,混合图神经网络将图神经网络与其他模型结合起来,以充分利用它们在不同任务上的优势。图神经网络可以有效地处理图结构数据,并捕捉节点之间的关系,而其他模型可能在处理其他类型的数据时更加优秀。通过将它们结合起来,混合图神经网络可以在少样本学习中更好地利用有限的数据。 其次,混合图神经网络可以通过在训练过程中使用一些预训练模型来提高学习效果。预训练模型是在大规模数据集上进行训练得到的模型,在特定任务上可能有较好的性能。通过将预训练模型与图神经网络结合,混合图神经网络可以在少样本学习中利用预训练模型的知识,以更好地适应有限的数据。 最后,混合图神经网络还可以通过设计适当的注意力机制来提高学习效果。注意力机制可以使网络更加关注重要的特征和关系,忽略无关的信息。在少样本学习中,选择性地关注有限的样本和特征对于提高学习的效果至关重要。混合图神经网络可以通过引入适当的注意力机制来实现这一点,以提取和利用关键信息。 综上所述,混合图神经网络是一种用于少样本学习的方法,它结合了图神经网络和其他模型的优势,并利用预训练模型和适当的注意力机制来提高学习效果。这种方法对于在有限数据条件下执行有效的学习和分类任务非常有帮助。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值