论文《Federated Recommendation with Additive Personalization》阅读

论文《Federated Recommendation with Additive Personalization》阅读

今天带来的是 ICLR 2024 关于联邦推荐的论文《Federated Recommendation with Additive Personalization》,论文由 悉尼科技大学 Zhiwei Li 等人 及 马里兰大学帕克分校(UMD)Tianyi Zhou 完成。论文发表在 ICLR 2024,主要聚焦于 联邦推荐场景下 (1)不同用户与 server 上传下载的各自的 embedding gradient 比较片面;(2)较大的数据量传输影响 传输效率 这几个问题,提出了模型 FedRAPFederated Recommendation with Additive Personalization)。

论文地址:https://openreview.net/pdf?id=xkXdE81mOK
代码仓库:https://github.com/mtics/FedRAP

论文概况

FedRAP实际上就是把每个user 对应的 client 中关于 当前用户的 user embedding 向量与 item embedding matrix 之间的运算进行拆分,具体来说,是将 item embedding matrix进行拆分,分为 C \mathbf{C} C D i \mathbf{D}^{i} Di

针对挑战 C1:大部分 FRS 都是将所有的item embedding 在全局进行共享,忽略了 用户 对 不同物品的 preference。作者使用 C \mathbf{C} C D i \mathbf{D}^{i} Di 的分离对这一问题进行解决。
针对挑战 C2:联邦推荐需要占用较大的通信开销,特别是对于物品数量较多的场景。作者加了一个正则化项进行约束。
此外,作者在一个全局向量 C \mathbf{C} C 的添加过程中,加入了一个渐进式增加的权重函数,用于提高学习精确率。

Preliminaries

  • rating 矩阵 R = [ r 1 , r 2 , ⋯   , r n ] ⊤ ∈ { 0 , 1 } n × m \mathbf{R} = [\mathbf{r}_1, \mathbf{r}_2, \cdots, \mathbf{r}_n ]^{\top} \in \{0,1\}^{n\times m} R=[r1,r2,,rn]{ 0,1}n×m n n n表示用户数量, m m m表示物品数量。
  • 用户表示 U ∈ R n × k \mathbf{U} \in \mathbb{R}^{n\times k} URn×k,每个客户端 i i i 只保存自己的那一份 u i \mathbf{u}_{i} ui
  • 作者对于物品表示使用了两份矩阵,local item embedding D ( i ) ∈ R m × k \mathbf{D}^{(i)}\in \mathbb{R}^{m\times k} D(i)Rm×k,这部分用户只保存在自己的client端,不进行传输,用于保存用户的个性化信息。
  • 另一份用于保存global item 信息的 embedding 是 C ∈ R m × k \mathbf{C} \in \mathbb{R}^{m \times k} CRm×k。在整个FedRAP中,用于传播的只有 C \mathbf{C} C 这部分而已。
  • 为标记每个用户的 interaction records,使用 Ω = { ( i , j ) : the  i -th user has rated the  j -th item
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值