论文《Federated Recommendation with Additive Personalization》阅读

论文《Federated Recommendation with Additive Personalization》阅读

今天带来的是 ICLR 2024 关于联邦推荐的论文《Federated Recommendation with Additive Personalization》,论文由 悉尼科技大学 Zhiwei Li 等人 及 马里兰大学帕克分校(UMD)Tianyi Zhou 完成。论文发表在 ICLR 2024,主要聚焦于 联邦推荐场景下 (1)不同用户与 server 上传下载的各自的 embedding gradient 比较片面;(2)较大的数据量传输影响 传输效率 这几个问题,提出了模型 FedRAPFederated Recommendation with Additive Personalization)。

论文地址:https://openreview.net/pdf?id=xkXdE81mOK
代码仓库:https://github.com/mtics/FedRAP

论文概况

FedRAP实际上就是把每个user 对应的 client 中关于 当前用户的 user embedding 向量与 item embedding matrix 之间的运算进行拆分,具体来说,是将 item embedding matrix进行拆分,分为 C \mathbf{C} C D i \mathbf{D}^{i} Di

针对挑战 C1:大部分 FRS 都是将所有的item embedding 在全局进行共享,忽略了 用户 对 不同物品的 preference。作者使用 C \mathbf{C} C D i \mathbf{D}^{i} Di 的分离对这一问题进行解决。
针对挑战 C2:联邦推荐需要占用较大的通信开销,特别是对于物品数量较多的场景。作者加了一个正则化项进行约束。
此外,作者在一个全局向量 C \mathbf{C} C 的添加过程中,加入了一个渐进式增加的权重函数,用于提高学习精确率。

Preliminaries

  • rating 矩阵 R = [ r 1 , r 2 , ⋯   , r n ] ⊤ ∈ { 0 , 1 } n × m \mathbf{R} = [\mathbf{r}_1, \mathbf{r}_2, \cdots, \mathbf{r}_n ]^{\top} \in \{0,1\}^{n\times m} R=[r1,r2,,rn]{ 0,1}n×m n n n表示用户数量, m m m表示物品数量。
  • 用户表示 U ∈ R n × k \mathbf{U} \in \mathbb{R}^{n\times k} URn×k,每个客户端 i i i 只保存自己的那一份 u i \mathbf{u}_{i} ui
  • 作者对于物品表示使用了两份矩阵,local item embedding D ( i ) ∈ R m × k \mathbf{D}^{(i)}\in \mathbb{R}^{m\times k} D(i)Rm×k,这部分用户只保存在自己的client端,不进行传输,用于保存用户的个性化信息。
  • 另一份用于保存global item 信息的 embedding 是 C ∈ R m × k \mathbf{C} \in \mathbb{R}^{m \times k} CRm×k。在整个FedRAP中,用于传播的只有 C \mathbf{C} C 这部分而已。
  • 为标记每个用户的 interaction records,使用 Ω = { ( i , j ) : the  i -th user has rated the  j -th item
### 关于推荐系统联邦学习的研究论文 #### 联邦学习中的个性化推荐算法 在联邦学习框架下,为了提升模型的泛化能力和保护用户数据隐私,《Think Locally, Act Globally: Federated Learning with Local and Global Representations》提出了结合局部和全局表示的方法[^4]。该方法通过引入本地特征向量,在不牺牲整体性能的情况下增强了针对特定用户的适应性。 #### 基于联邦学习的安全性和效率改进方案 考虑到隐私问题是联邦学习的重要组成部分,有研究表明需要采用适当的技术手段来保障训练过程中的信息安全[^5]。这些措施不仅限于加密通信协议的应用,还包括差分隐私机制的设计以及对抗攻击模式下的防御策略开发等方面的工作。 #### 序列型推荐系统的最新进展 对于时间序列类别的商品预测任务而言,近年来出现了许多创新性的解决方案。例如,在IJCAI、ICML等多个顶级会议上发布的研究成果展示了如何利用图神经网络(GNN)、自注意力机制等先进技术改善传统基于矩阵分解或协同过滤的方法效果[^1]。 ```python import numpy as np from sklearn.model_selection import train_test_split def federated_learning_with_local_global_representations(data): """ 实现了一个简单的模拟函数, 展示了如何在一个假设场景中应用联合学习并融合地方和个人表征。 参数: data (DataFrame): 用户行为记录的数据集 返回值: tuple: 训练后的全局模型参数和其他统计信息 """ X_train, X_test, y_train, y_test = train_test_split( data.drop('target', axis=1), data['target'], test_size=0.2) # 这里省略具体实现细节... global_model_params = {} stats_info = {"accuracy": np.random.rand()} return global_model_params, stats_info ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值