《graph neural networks for social recommendation》论文阅读


发表于www’19。我认为本篇的创新性:1.引入社交网络信息 2.引入attention机制 3.单独处理不同的opinion(可以理解为不同的打分值)。

abstract

在GNNs上建立社交推荐系统面临着挑战:user-item图同时编码了交互信息和它们的相关意见;社交关系具有不同的强度;users同时在两个图之中(user-user社交网络、user-item图)。为了解决同时解决上述三个挑战,我们提出了一个图神经网路框架(GraphRec)。具体来说,我们提供了一个方法来同时捕捉user-item图之中的interactions以及opinions,并且提出了框架GraphRec,同时建模了两个图以及不同的强度。两个数据集上的实验证明了框架的有效性。

1.introduction

基于GNN的推荐系统面临着挑战:1)社交图和user-item图提供了了用户不同方面的信息。因此需要同时从两个图中挖掘出有效信息来表示用户。 2)user-item图不仅有interaction,也包括了用户对物品的偏好(interaction含分值信息)。于是需要同时捕捉这种偏好以及interaction的信息。3)如何识别具有不同强度的连接的社交关系。

2.the proposed framework

2.1 definitions and notations

请添加图片描述

2.2 an overview of the proposed framework

请添加图片描述

包含三个部分:用户建模、物品建模以及预测部分。用户建模部分为两种不同的用户图构建了两种聚合过程,一种是item aggregation,从user-item中聚合用户相关的items来理解user,一种则是social aggregation,用于聚合social graph中的用户间的关系信息,然后最终获得用户潜在表征通过同时组合item space和user space的信息。第二个部分是物品建模部分,用于学习物品潜在因子,为了同时考虑user-item graph中的interactions以及opinions,我们引入了user aggregation,用于在物品建模的过程中聚合用户的opinions。第三个部分是通过预测来学习模型参数(通过组合用户和物品的建模成分)。

2.3 user modeling

user modeling的目标是学得用户 u i u_i ui的潜在因子 h i ∈ R d h_i \in \mathbb{R}^d hiRd。挑战是如何组合user-item graph和social graph。
于是使用了两种聚合器来从两个图上学习:item aggregation以及social aggregation。item aggregation用于从user-item图中学习物品空间的用户潜在因子 h i I ∈ R d h_i^I \in \mathbb{R}^d hiIRd。social aggregation用于从social图中学习社交空间用户潜在因子 h i S ∈ R d . h_i^S \in \mathbb{R}^d. hiSRd.以上两种因子被组合起来形成最后的用户潜在因子 h i h_i hi

item aggregation:
这个时候需要同时捕捉user-item图上的interactions和opinions来形成 h i I h_i^I hiI

h i I = σ ( W ⋅ A g g r e i t e m s ( x i a , ∀ a ∈ C ( i ) ) + b ) , h_i^I = \sigma(W \cdot Aggre_{items}({x_{ia},\forall a\in C(i)})+b), hiI=σ(WAggreitems(xia,aC(i))+b)

C ( i ) C(i) C(i)是用户 u i u_i ui交互过的物品集合, x i a x_{ia} xia代表opinion-aware interaction representation between u i u_i ui和物品 v a v_a va

接下来将对opinion-aware interaction representation x i a x_{ia} xia和aggregation function A g g r e i t e m s Aggre_{items} Aggreitems进行定义。

对于每一个opinions的种类 r r r(例:不同的打分值),我们都引入一个opinion embedding vector e r ∈ R d e_r \in \mathbb{R}^d erRd作为一个dense vector representation来表示opinion r r r。对于一个用户 u i u_i ui和物品 v a v_a va之间具有opinion r r r的interaction,我们建模opinion-aware interaction representation x i a x_{ia} xia为通过MLP的item embedding q a q_a qa和opinion embedding e r e_r er的组合(其实就是concatenation)。MLP的输出就是opinion-aware representation x i a x_{ia} xia:

x i a = g v [ q a ⊕ e r ] x_{ia}=g_v{[q_a \oplus e_r]} xia=gv[qaer]
g v g_v gv为上述的信息聚合过程。 ⊕ \oplus 代表concatenation操作。

一个受欢迎的aggregation function for A g g r e i t e m s Aggre_{items} Aggreitems是mean函数。

h i I = σ ( W ⋅ { ∑ a ∈ C ( i ) α i x i a } + b ) h_i^I =\sigma(W \cdot \{ \sum_{a \in C(i)}\alpha_i x_{ia}\}+b) hiI=σ(W{aC(i)αixia}+b),
其中 α i = 1 ∣ C ( i ) ∣ \alpha_i = \frac{1}{|C(i)|} αi=C(i)1。但是每个interaction的影响应该是不一致的,所以这种方法存在问题。

使用注意力机制:

h i I = σ ( W ⋅ { ∑ a ∈ C ( i ) α i a x i a } + b ) h_i^I =\sigma(W \cdot \{ \sum_{a \in C(i)}\alpha_{ia} x_{ia}\}+b) hiI=σ(W{aC(i)αiaxia}+b),
这种注意力网络的输入是 x i a x_{ia} xia以及目标用户 u i u_i ui的嵌入 p i p_i pi。注意力网络定义如下:
α i a ∗ = w 2 T ⋅ σ ( W 1 ⋅ [ x i a ⊕ p i ] + b 1 ) + b 2 . \alpha^*_{ia}=w_2^T \cdot \sigma(W_1 \cdot [x_{ia} \oplus p_i]+b_1)+b_2. αia=w2Tσ(W1[xiapi]+b1)+b2.
之后再经过正则化操作:
α i a = e x p ( α i a ∗ ) ∑ a ∈ C ( i ) e x p ( α i a ∗ ) \alpha_{ia}=\frac{exp ({\alpha^*_{ia}})}{\sum_{a \in C(i)}exp(\alpha^*_{ia})} αia=aC(i)exp(αia)exp(αia)

social aggregation:
用于从社交网络中获取用户潜在因子。过程与上面类似,不再多加叙述:
请添加图片描述
learning user latent factor:
需要同时考虑item-space user latent factors以及social-space user latent factors。在经过concatenation以后通过MLP来组合他们。
请添加图片描述

2.4 item modeling

需要同时考虑interactions和opinions。与user的item aggregation基本一致,不再赘述。
请添加图片描述

2.5 rating prediction

本文的模型GraphRec聚焦于rating prediction。
请添加图片描述

2.6 model training

目标函数:请添加图片描述

3.experiment

请添加图片描述

请添加图片描述

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值