论文《Vertical Federated Learning: Concepts, Advances, and Challenges》阅读

今天带来的是一篇综述,主题关于纵向联邦,综述组织合理,内容丰富,而且对新手非常友好,值得推荐!

论文概况

论文由清华大学 AIR 刘洋 等人完成,发表在TKDE上。
论文链接:TKDE

纵向联邦

FLs
如图所示,

  • 横向联邦 针对的是不同的sample具备相同的特征空间,主要干的事是做梯度的聚合、计算等内容。
  • 纵向联邦(狭义)是指不同的 sample,但是具备相同的特征空间,主要目的是为了将不同平台下的重叠用户的特征利用最大化。
  • 特征迁移学习 就是两者之间,重叠的 sample 有限,交叉的特征也不是全部,这种情况就是特征迁移的典型场景。

具体比较也可以如表所示:
Comparisons of FLs

此外,从应用场景出发,FL也可分类为:cross-silo 和 cross-device。

  • Cross-Silo 就是指为了解决数据孤岛问题,让不同的组织、公司数据利用最大化。既可以包含横向、也可以包含纵向。
  • Cross-Device 是指跨设备的联邦学习,这种一般是指横向,例如在不同的设备上聚合用户的梯度、模型等。

VFL框架介绍

问题定义

问题形式化如下所示:
min ⁡ Θ ℓ ( Θ ; D ) ≜ 1 N ∑ i = 1 N f ( Θ ; x i , y i ) + λ ∑ k = 1 K γ ( Θ ) (1) \min _{\boldsymbol{\Theta}} \ell(\boldsymbol{\Theta} ; \mathcal{D}) \triangleq \frac{1}{N} \sum_{i=1}^N f\left(\boldsymbol{\Theta} ; \mathbf{x}_i, y_i\right)+\lambda \sum_{k=1}^K \gamma(\mathbf{\Theta}) \tag{1} Θmin(Θ;D)N1i=1Nf(Θ;xi,yi)+λk=1Kγ(Θ)(1)

典型场景下,VFL 具有 K K K 方。

  • 其中下标为 k k k k ∈ [ 1 , K − 1 ] k \in [1, K-1] k[1,K1] 的是被动方 (passive party),只具有feature,不具有label。
  • 只有主动方(active party)具有label,运算在主动方一方完成,下标为 K K K

γ ( ⋅ ) \gamma(\cdot) γ() 是 函数正则化。 f ( ⋅ ) f(\cdot) f() 表示 任务的预测函数。

在VFL场景下,任意数据被 K K K 方分割开,共同构成数据的特征空间,i.e.,
{ x i , k ∈ R d k } k = 1 K \{\mathbf{x}_{i,k} \in \mathbb{R}^{d_{k}}\}_{k=1}^{K} { xi,kRdk}k=1K。被动方只具有feature,即
D k ≜ { x i , k } i = 1 N ∀ k ∈ [ 1 , K − 1 ] \mathcal{D}_k \triangleq\left\{\mathbf{x}_{i, k}\right\}_{i=1}^N \forall k \in [1, K-1] Dk{ xi,k}i=1Nk[1,K1]。主动方具备feature 和 label,如下: D K ≜ { x i , K , y i , K } i = 1 N \mathcal{D}_K \triangleq\left\{\mathbf{x}_{i, K}, y_{i, K}\right\}_{i=1}^N DK{ xi,K,yi,K}i=1N

模型可以分为 local 部分 和 global 部分,分别用于每个 Party 各自的计算 和 汇总到 Active Pary 进行预测任务,将 Θ \boldsymbol{\Theta} Θ 重写, F K ( ⋅ ) \mathcal{F}_K(\cdot) FK() 表示global model,参数集合表示为 ψ K \psi_K ψK

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值