一、核心框架分类与适用场景
人工智能框架根据功能可分为深度学习框架、机器学习框架、强化学习框架和传统工具库,以下是主流工具及选型建议:
1. 深度学习框架
(1)PyTorch
- 核心优势:动态计算图、灵活性强,适合科研与快速原型开发,支持多模态任务(如NLP、CV) 。
- 技术生态:集成Hugging Face、PyTorch Lightning等扩展库,支持模型部署工具如TorchServe、ONNX。
- 适用场景:学术研究、复杂模型实验(如Transformer架构)、小规模工业部署。
- 学习资源:官方文档、李沐《动手学深度学习》课程、Kaggle实战案例 。
(2)TensorFlow/Keras
- 核心优势:静态计算图优化,适合大规模生产环境;Keras简化接口,适合快速开发 。
- 技术生态:支持TensorFlow Extended(TFX)全流程工具链,兼容TensorFlow Lite(移动端部署)。
- 适