人工智能学习框架完全指南(2025年更新版)

一、核心框架分类与适用场景

人工智能框架根据功能可分为深度学习框架机器学习框架强化学习框架传统工具库,以下是主流工具及选型建议:


1. 深度学习框架

(1)PyTorch

  • 核心优势:动态计算图、灵活性强,适合科研与快速原型开发,支持多模态任务(如NLP、CV) 。
  • 技术生态:集成Hugging Face、PyTorch Lightning等扩展库,支持模型部署工具如TorchServe、ONNX。
  • 适用场景:学术研究、复杂模型实验(如Transformer架构)、小规模工业部署。
  • 学习资源:官方文档、李沐《动手学深度学习》课程、Kaggle实战案例 。

(2)TensorFlow/Keras

  • 核心优势:静态计算图优化,适合大规模生产环境;Keras简化接口,适合快速开发 。
  • 技术生态:支持TensorFlow Extended(TFX)全流程工具链,兼容TensorFlow Lite(移动端部署)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

赛博AI Lewis

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值