机器学习08-正则化

一,为什么要使用正则化 

  到现在为止,我们已经学习了几种不同的学习算法,包括线性回归和逻辑回归,它们能够有效地解决许多问题,但是当将它们应用到某些特定的机器学习应用时,会遇到过度拟合(over-fitting)的问题,可能会导致它们效果很差。在这篇博文中,我将为你解释什么是过度拟合问题,我们将谈论一种称为正则(regularization)的技术,它可以改善或者减少过度拟合问题。如果我们有非常多的特征,我们通过学习得到的假设可能能够非常好地适应训练集(代价函数可能几乎为 0),但是可能会不能推广到新的数据。下图是一个回归问题的例子:


  第一个模型是一个线性模型,欠拟合,不能很好地适应我们的训练集;第三个模型是一个四次方的模型,过于强调拟合原始数据,而丢失了算法的本质:预测新数据。我们可以看出,若给出一个新的值使之预测,它将表现的很差,是过拟合,虽然能非常好地适应我们的训练集但在新输入变量进行预测时可能会效果不好;而中间的模型似乎最合适。

 分类问题中也存在这样的问题:


   就以多项式理解,x 的次数越高,拟合的越好,但相应的预测的能力就可能变差。

   问题是,如果我们发现了过拟合问题,应该如何处理?

   1. 丢弃一些不能帮助我们正确预测的特征。可以是手工选择保留哪些特征,或者使用一些模型选择的算法来帮忙(例如 PCA)

   2. 正则化。 保留所有的特征,但是减少参数的大小(magnitude)。

 

二,正则化的原理

 上面的回归问题中如果我们的模型是:


  我们可以从之前的事例中看出,正是那些高次项导致了过拟合的产生,所以如果我们能让这些高次项的系数接近于的话,我们就能很好的拟合了。所以我们要做的就是在一定程度上减小这些参数 θ 的值,这就是正则化的基本方法。我们决定要减少 θ3   θ4  的大小,我们要做的便是修改代价函数,在其中 θ3  θ4  设置一点惩罚。这样做的话,我们在尝试最小化代价时也需要将这个惩罚纳入考虑中,并最终导致选择较小一些的 θ3   θ4。修改后的代价函数如下:

 

其中 λ 又称为正则化参数(Regularization Parameter)。 注:根据惯例,我们不对 θ0 行惩罚。经过正则化处理的模型与原模型的可能对比如下图所示:


 如果选择的正则化参数 λ 过大,则会把所有的参数都最小化了,导致模型变成 hθ(x)=θ0也就是上图中红色直线所示的情况,造成欠拟合。那为什么增加的一项就可以使 θ 的值减小呢?因为如果我们令λ的值很大的话,为了使 Cost Function 尽可能的小,所有的 θ 的值(不包括 θ0)都会在一定程度上减小。若λ的值太大了,那么 θ(不包括 θ0)都会趋近于 0,这样我们所得到的只能是一条平行于轴的直线。所以对于正则化,我们要取一个合理的λ的值,这样才能更好的应用正则化。回顾一下代价函数,为了使用正则化,让我们把这些概念应用到到线性回归和逻辑回归中去,那么我们就可以让他们避免过度拟合了。

三,线性回归的正则化

 对于线性回归的求解,我们之前推导了两种学习算法:一种基于梯度下降,一种基于正规方程。正则化线性回归的代价函数为:



   每次跟新θ时,再减少θ的额外值就是正则化的核心原理

   我们同样也可以利用正规方程来求解正则化线性回归模型,方法如下所示:

   

   图中的矩阵尺寸为 (n+1)*(n+1)。


四,逻辑回归的正则化

自己计算导数同样对于逻辑回归,我们也给代价函数增加一个正则化的表达式,得到代价函数:


要最小化该代价函数,通过求导,得出梯度下降算法为:



五,总结以及后面博文内容

   目前大家对机器学习算法可能还只是略懂,但是一旦你精通了线性回归、高级优化算法和正则化技术,坦率地说,你对机器学习的理解可能已经比许多工程师深入了。现在,你已经有了丰富的机器学习知识,目测比那些硅谷工程师还厉害,或者用机器学习算法来做产品。接下来的博文中,我们将学习一个非常强大的非线性分类器,无论是线性回归问题,还是逻辑回归问题,都可以构造多项式来解决。你将逐渐发现还有更强大的非线性分类器,可以用来解决多项式回归问题。我们接下来将将学会,比现在解决问题的方法强大 N 倍的学习算法。


       本博文参阅斯坦福大学吴恩达(Andrew Ng)机器学课程,同时感谢黄海广博士的指导,转载请标明出处









  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值