正则化(一)

1.过拟合的问题

如果我们有非常多的特征,我们通过学习得到的假设可能能够非常好地适应训练集(代
价函数可能几乎为 0 ),但是可能会不能推广到新的数据。
下图是一个回归问题的例子:
第一个模型是一个线性模型,欠拟合,不能很好地适应我们的训练集;第三个模型是一
个四次方的模型,过于强调拟合原始数据,而丢失了算法的本质:预测新数据。我们可以看
出,若给出一个新的值使之预测,它将表现的很差,是过拟合,虽然能非常好地适应我们的
训练集但在新输入变量进行预测时可能会效果不好;而中间的模型似乎最合适。
分类问题中也存在这样的问题:
就以多项式理解, x 的次数越高,拟合的越好,但相应的预测的能力就可能变差。
问题是,如果我们发现了过拟合问题,应该如何处理?
1. 丢弃一些不能帮助我们正确预测的特征。可以是手工选择保留哪些特征或者使用
一些模型选择的算法来帮忙(例如 PCA
2. 正则化。保留所有的特征,但是减少参数的大小( magnitude )。

2 .代价函数

上面的回归问题中如果我们的模型是:
我们可以从之前的事例中看出,正是那些高次项导致了过拟合的产生,所以如果我们能
让这些高次项的系数接近于 0 的话,我们就能很好的拟合了。
所以我们要做的就是在一定程度上减小这些参数θ的值,这就是正则化的基本方法。我
们决定要减少 θ 3 θ 4 的大小,我们要做的便是修改代价函数,在其中 θ 3 θ 4 设置一点
惩罚。这样做的话,我们在尝试最小化代价时也需要将这个惩罚纳入考虑中,并最终导致选
择较小一些的 θ 3 θ4。修改后的代价函数如下:
通过这样的代价函数选择出的 θ 3 θ 4 对预测结果的影响就比之前要小许多。假如我们
有非常多的特征,我们并不知道其中哪些特征我们要惩罚,我们将对所有的特征进行惩罚,
并且让代价函数最优化的软件来选择这些惩罚的程度。这样的结果是得到了一个较为简单的
能防止过拟合问题的假设:
其中 λ 又称为正则化参数( RegularizationParameter )。注:根据惯例,我们不对 θ 0
行惩罚。经过正则化处理的模型与原模型的可能对比如下图所示:

如果选择的正则化参数λ过大,则会把所有的参数都最小化了,导致模型变成hθ(x)=θ0

也就是上图中红色直线所示的情况,造成欠拟合。 

那为什么增加的一项 可以使θ的值减小呢?
因为如果我们令λ的值很大的话,为了使 Cost Function 尽可能的小,所有的θ的值(不
包括θ0)都会在一定程度上减小。
但若λ的值太大了,那么θ(不包括θ0)都会趋近于 0 ,这样我们所得到的只能是一条
平行于 x 轴的直线。 所以对于正则化,我们要取一个合理的λ的值,这样才能更好的应用正则化

 

 

 

 

 

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值