基于RIF的通用蛋白设计框架

参考文献: Cao L, Coventry B, Goreshnik I, et al. Robust de novo design of protein binding proteins from target structural information alone[J]. bioRxiv, 2021.

解读作者:吴炜坤

一、背景介绍

自从2012年以来,de novo设计靶向结合的蛋白的技术得到了长足的发展。在Rosetta社区过往的一系列文章中,我们可以看出好几个关键技术的交接点,在2020年以前主要以docking-match、motif-graft、fragment重组技术为主,配合酵母展示库的方法对初筛的weak binder进行优化,而在近两年,RIF和深度学习框架厚积薄发,逐渐开始关注全新PPI和高精度的设计方法,其中最具前沿和代表性的工作就是RIF和RFDesign。

那今天我们就主要来讲一讲基于RIF的通用设计框架的工作原理和成功应用的案例。

 二、设计方法

2.1 RIF是什么?

在2011年-2015年期间,产生全新蛋白-蛋白相互作用设计的理念和实践就开始了,但使用的是常规的docking/match-design的方法,其存在最大的问题:hotspot和binding pose的组合空间巨大,通常不能将设计和刚体搜索同时做到, 一般只能先考虑1-3个hotspot的组合并优选少量的初始ppi侧链构象,其次再考虑scaffold和受体之间的粗糙的形状互补后进行热点残基和scaffold和“融合”,最后再通过多轮侧链设计和优化。因此只能在非常小的空间内进行搜索,并且该方法较为依赖多样的scaffold数据库。

而今天介绍的基于RIF(rotamer interaction field)的方法早在2014年间就进行了开发。有兴趣的同学可以看最古老的说明文档的PPT:

Legacy — rif 0.1.dev0 documentation

简单来说RIF分为rifgen和rifdock两个基本的步骤:rifgen负责在某些小分子或热点氨基酸附近以近乎遍历的方式进行rotamer的生成,特别地是使用rif可以针对极性残基也做优化,这些rotamer信息都被储存在hash table中。

rifdock:使用被对接到指定区域的scaffold库作为输入(可以理解为粗略的形状互补搜索),对每一个binding pose的主链xyz信息与rifgen中巨量的inversed-rotamer进行层级逐渐缩小范围的匹配搜索,对clash、rotamer等指标打分进行排名,优选较好的scaffold binding pose。

从此看来,RIF一定程度上解决了需要“同时对接和侧链设计”的痛点,rifgen等于在设计ppi上的残基(“打螺丝”),rifdock负责把预先生成好的稳定scaffold进行“安装”。

 这套方法开发出来后,最先尝试的dou jiayi是在小分子中进行de novo binder设计,详见2018年发表的文章:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6275156/

再后来的故事大家也清楚,cao longxing大神在将此方法改进并发扬光大,并设计了对抗新冠的皮摩尔级亲和力的binder:

https://www.science.org/doi/10.1126/science.abd9909

 

2.2 RIF+MotifGraft横空出世

这套方法流程已经全部概述在下面一张图了。作者这里对新的方法做了一个生动的比喻:将rifgen产生的hotspot-stub比喻为踏脚石,将scaffold比作人,将设计binder比作攀岩的过程,通过地毯式打钉,把人挂在上面,只要挂得住,就把那一系列的好钉子留下,最后通过将高矮胖瘦不同的人去抓这些钉子,从而找到最好的攀岩姿势。

作者提出新的通用设计方法,其主要的亮点在于:

 采用了更高效的helical extension产生高质量三螺旋骨架库(34507个);

  • 由于蛋白-蛋白相互作用主要是疏水的,因此rifgen只考虑疏水的hotspo stub;

  • 使用patchdock进行快速的形状互补后,接上rifdock,可以找到ddG和cms指标更好的pose;

  • 采用快速的repack+min对rifdock产生的构象进行打分过滤,并且仅考虑Rosetta的疏水相互作用项使得优化速度提升了10倍;

  • 在Interface sequence Design中引入cms(the contact molecular surface) score term,在优化时考虑形状互补以及非极性包埋残基,并且在蒙特卡洛过程中upweight处于ppi界面上氨基酸的score,使得PPI的质量进一步提升;

  • 将质量好的binding motif(连续的)进行分离以及聚类,这一步相当于隐式地考虑了scaffold pose的体积,同时把最有可能结合的热点残基筛选;(2000个,有点像binding TERMs的操作)

  • 采用motif-graft的细化搜索scaffold和展开新一轮的界面设计。

整个流程图(包括实验):

三、测试效果

 作者在12个蛋白靶点上进行了相关的测试,均成功设计出能够特异性靶向结合的mini binder,少数的binder更是突破了pM级别,这些binder高度稳定,表面具有明显的净电荷分布。

其中部分结构的解析表明,设计出来结合表位和计算机模型高度一致!

结语

作者开源发布所有的rosetta script和database!人人皆可设计binder,或许已经不再遥远。

RIF docking implementation:

  • https://github.com/rifdock/rifdock

 design scripts:

  • http://files.ipd.uw.edu/pub/robust_de_novo_design_ minibinders_2021/supplemental_files/scripts_and_main_pdbs.tar.gz

  • http://files.ipd.uw.edu/pub/robust_de_novo_design_minibinders_2021/ supplemental_files/computational_protocol_analysis.tar.gz

  • http:// files.ipd.uw.edu/pub/robust_de_novo_design_minibinders_2021/ supplemental_files/experimental_data_and_analysis.tar.gz

database:

  • http:// files.ipd.uw.edu/pub/robust_de_novo_design_minibinders_2021/ supplemental_file s/scaffolds.tar.gz

models:

  • http://files.ipd.uw.edu/pub/ robustde_novo_design_minibinders_2021/supplemental_files/design models_pdb.tar.gz

  • http://files.ipd.uw.edu/pub/robust_de_novo_ design_minibinders_2021/supplemental_files/design_models_silent. tar.gz

基于Python的天气预测与可视化(完整源码+说明文档+数据),个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值