图卷积神经网络详解 1 为什么会出现图卷积神经网络? 2 图卷积网络的两种理解方式 2.1 vertex domain(spatial domain):顶点域(空间域) 2.2 spectral domain:频域方法(谱方法) 3 什么是拉普拉斯矩阵? 3.1 常用的几种拉普拉斯矩阵 3.2 无向图的拉普拉斯矩阵有什么性质 3.4拉普拉斯矩阵的谱分解(特征分解) 3.5 拉普拉斯算子 4 如何通俗易懂地理解卷积? 4.1连续形式的一维卷积 4.2 离散形式的一维卷积 5 傅里叶变换 5.1 连续形式的傅立叶变换 5.1.1 如何直观地理解傅立叶变换? 一、傅里叶级数 1.1傅里叶级数的三角形式 1.2 傅里叶级数的复指数形式 二、傅里叶变换 2.1一维连续傅里叶变换 三、频谱和功率谱 3.1频谱的获得 3.2频谱图的特征 3.3频谱图的组成 5.2 频域(frequency domain)和时域(time domain)的理解 5. 3 周期性离散傅里叶变换 (Discrete Fourier Transform, DFT) 6 Graph上的傅里叶变换及卷积 6.1 图上的傅里叶变换 6.2 图的傅立叶变换一图的傅立叶变换的矩阵形式 6.3 图的傅立叶逆变换一图的傅立叶逆变换的矩阵形式 6.4 图上的傅里叶变换推广到图卷积 7 为什么拉普拉斯矩阵的特征向量可以作为傅里叶变换的基?特征值表示频率? 7.1 为什么拉普拉斯矩阵的特征向量可以作为傅里叶变换的基? 7. 2 怎么理解拉普拉斯矩阵的特征值表示频率? 8 深度学习中GCN的演变 8.1 第一代GCN 8.2 第二代GCN 8.3 利用Chebyshev多项式作为卷积核 8.4 GCN半监督分类 参考资料: 对卷积的理解和物理意义 图卷积网络 GCN Graph Convolutional Network(谱域GCN)的理解和详细推导 【GNN】万字长文带你入门 GCN 【Code】关于 GCN,我有三种写法 githup地址,代码,论文总结和推荐 如何理解 Graph Convolutional Network(GCN)&#