脑龄预测的人工智能模型
在人的一生中,大脑会发生与年龄相关的显著变化,个体的衰老速度会显示出明显的个体间差异,从而产生作为大脑特征在特定认知领域上的大脑标记。这些是由各种各样的因素形成的,既有内部的,也有外部的。最近,研究人员通过使用机器和深度学习(DL)技术,可以从神经成像内表型中获得对大脑年龄(BA)的准确预测。预测模型在准确估计年龄的同时,还揭示了哪些特征对最终预测贡献最大,这是揭示大脑老化模式演变潜在机制的关键。同时,可解释的人工智能(XAI)方法正在成为不同领域的使能技术,在生物医学中也不例外。在此框架内,本文考察了BA研究,并对可解释机器学习(ML)/ DL(深度学习)方法的开发方面的最新进展进行了全面回顾,强调了主要的未决问题,并为未来方向提供了提示。
介绍
一个人的大脑的脑龄是多少?这个看似简单的问题隐藏着一个极其复杂的系统,其中不同类型的内生变量和外生变量以一种未知的方式相互作用。在本文中,作者旨在通过关注一个具体的案例来提供一些见解:解释神经成像衍生的内表型对脑龄确定的影响,即大脑的“大脑特征”或“指纹”,同时