reference:https://blog.csdn.net/juronghui/article/details/78612653
https://www.zhihu.com/question/32673260
一般来说,在合理的范围之内,越大的 batch size 使下降方向越准确,震荡越小;batch size 如果过大,则可能会出现内存爆表和局部最优的情况。小的 bath size 引入的随机性更大,难以达到收敛,极少数情况下可能会效果变好。
谈谈深度学习中的 Batch_Size
Batch_Size(批尺寸)是机器学习中一个重要参数,涉及诸多矛盾,下面逐一展开。
首先,为什么需要有 Batch_Size 这个参数?
Batch 的选择,首先决定的是下降的方向。如果数据集比较小,完全可以采用全数据集 ( Full Batch Learning )的形式,这样做至少有 2 个好处:其一,由全数据集确定的方向能够更好地代表样本总体,从而更准确地朝向极值所在的方向。其二,由于不同权重的梯度值差别巨大,因此选取一个全局的学习率很困难。 Full Batch Learning 可以使用Rprop (弹性反向传播)只基于梯度符号并且针对性单独更新各权值。
对于更大的数据集,以上 2 个好处又变成了 2 个坏处:其一,随着数据集的海量增长和内存限制,一

本文探讨了深度学习中Batch Size的选择,分析了大小不同的Batch Size对训练效果的影响。大Batch Size能提高内存利用率和训练速度,但可能导致内存不足和收敛速度减慢;小Batch Size引入更多随机性,可能难以收敛。适当调整Batch Size可以在速度和精度间找到平衡。
最低0.47元/天 解锁文章
1598

被折叠的 条评论
为什么被折叠?



