最全攻略:人工智能如何看懂激光雷达点云

SqueezeSeg

Network structure of SqueezeSeg

SqueezeSeg: Convolutional Neural Nets with Recurrent CRF for Real-Time Road-Object Segmentation from 3D LiDAR Point Cloud​arxiv.org

  • 简介:将激光点云沿圆柱面投影展开为深度图转化为2D图像处理。逐个像素人工构造特征(x,y,z,intensity,distance),使用2D FCN做语义分割。
  • 优点:不需要做栅格化预处理,实时性高。
  • 缺点:受限于雷达纵向分辨率,信息被压缩。维度压缩后存在尺度问题,遮挡问题。

PIXOR

Overview of the proposed 3D object detector from Bird’s Eye View (BEV) of LIDAR point cloud.

http://openaccess.thecvf.com/content_cvpr_2018/papers/Yang_PIXOR_Real-Time_3D_CVPR_2018_paper.pdf​openaccess.thecvf.com

 

简介:基于BEV(鸟瞰图 Bird Eye View),转为2D鸟瞰图片。将高度值作为future channel,通过二值化占空比来表示,外加一层intensity channel。

优点:相比SqueezeSeg没有尺度问题和遮挡问题。Anchor free, 2D FCN, end-to-end,灵活性和扩展性较好。实时性和综合性能均不错。

缺点:需要2D栅格化和slice预处理,会损失信息引入quantization artifacts(量化噪声)。因此存在遮挡问题,在路面不平整或有不同高度层物体重叠的情况下效果较差。


MV3D

Multi-View 3D object detection network (MV3D)

Multi-View 3D Object Detection Network for Autonomous Driving​arxiv.org

 

简介:多视角多传感器融合,MV3D网络采用LIDAR点云生成的鸟瞰图和前视图以及摄像头图像作为输入。 首先从鸟瞰图生成3D对象提案并投影到三个视图上。 然后使用深度融合网络通过ROI池组合获得的每个视图的区域特征。特征融合后被联合用于预测对象类并进行定向3D框复原。

优点:利用多种传感器信息融合,提升表征能力

缺点:对多传感器标定要求较高,硬件结构复杂,需要2D栅格化和slice预处理,会损失信息,实时性差。

3D FCN

A sample illustration of the 3D FCN structure used in this paper.

3D Fully Convolutional Network for Vehicle Detection in Point Cloud​arxiv.org

 

简介:将2D FCN扩展到3D,每个栅格内使用二值化占空比构造人工特征。

优点:共享基础体征提取网络,多任务输出,Anchor free。

缺点:需要栅格化处理,会损失信息,计算量大,实时性不佳


PointNet

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation​arxiv.org

 

简介:尊重输入点中的置换不变性,使用max pooling。共享MLP网络结构,可以适应不同点数的输入。

优点:无需预处理,直接输入点云,可以灵活扩展数据维度。对点云密度变化不敏感。

缺点:需要将一整个点云聚类分割成单个对象集合,并逐个调整输入模型的点云点数量,计算量大,实时性差。


VoxelNet

VoxelNet architecture

VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection​arxiv.org

 

简介:苹果无人车团队的论文。将点云划分为等间隔的三维像素(栅格化),并通过新引入的立体像素特征编码(VFE)层将每个立体像素内的一组点转换为统一的特征表示。 这样,点云被编码为描述性的体积表示,然后连接到RPN以生成检测。

优点:大尺度上构造PRN,小尺度上利用了立体像素特征编码(VFE)层。可以处理整个点云而不需要人工聚类。

缺点:需要栅格化处理,会损失信息,计算量较大。

关于这个算法我的另一个文章写过更详细的解读:MAZE:苹果的无人车激光雷达处理方案


Graph CNN

Dynamic Graph CNN for Learning on Point Clouds​arxiv.org

 

Point cloud segmentation using the proposed neural network

简介:基于本地邻域信息,可微分的,并可被插入其他现有算法。

优点:无需预处理。包含本地邻域信息,可被堆叠或循环应用以学习全局形状属性。

缺点:破坏数据并行特性,无法充分硬件加速,实时性差。


FaF Network

Fast and Furious: Real Time End-to-End 3D Detection, Tracking and Motion Forecasting with a Single Convolutional Net | Uber Research​eng.uber.com

 

简介:Uber团队的算法。能够在给定3D传感器捕获的数据的情况下共同推理3D检测,跟踪和运动预测,并保障一定的实时性。

优点:挖掘时序信息,能够补全稀疏数据信息,利用时序信息增强检测准确度。单网络在30 ms内完成检测,跟踪和预测任务。

缺点:需要多种时序数据辅助,传感器硬件复杂度高,计算量较大。


总而言之,每种算法各有优势,没有最好的,只有合适的。

其他无人驾驶相关论文可以到MAZE:学习无人驾驶车,你所必须知道的。查看。

 

  • 2
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值