TOPSIS 优劣解距离法

本文详细介绍了TOPSIS综合评价方法,包括指标正向化、标准化处理及得分计算流程。TOPSIS能充分运用原始数据信息,精确反映评价方案间的差距,适用于多种评价场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

TOPSIS是一种常用的综合评价方法,能充分利用原始数据的信息,其结果能精确地反映各评价方案之间的差距。主要应用于评价类的模型。

举例介绍

  • 常用构造计算评分指标公式,下面三点解释了我们采用已给数据的最大最小值来计算,而不是用例如成绩就用max=100,min=0来计算的原因
    1
  • 增加指标的个数,以及对指标的分类
    2
  • 统一指标类型,也就是十分常用的指标正向化。

3

  • 在统一指标类型之后,由于指标的单位不一样,我们需要对指标进行标准化处理
    4
  • 标准化处理的公式
    5
  • 那么经过标准化之后,我们如何计算得分呢?首先介绍只有一个指标的计算
    6
  • 当有多个计算指标时计算
    7
  • 举例说明
    8

TOPSIS步骤

第一步将原始矩阵正向化

  • 不同类型的指标
    9

极小型指标–>极大型指标

10

中间型指标-》极大型

11

区间型–》极大型

12

第二步正向化矩阵标准化

13

第三步计算得分并归一化

14

TOPSIS模型改进

15

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值