两种方式构建一个k个不同元素的有序序列
- 一次只选择一个元素,选择k次,所以所有可能的结果数量为: n∗(n−1)∗(n−2)⋯(n−k+1)=n!(n−k)!
- 一次选择k个元素,然后将这k个元素排列,所以所有可能的结果数量为: (nk)∗k!
所以 (nk) 的定义为:给定n个元素的集合中包含k个元素子集的数量,它被称作二项式系数(binomial coefficients)。用公式表示为: n!(n−k)!∗k! 。
多项式系数
(nk1,k2,⋯,km)=n!k1!k2!⋯km!
两种方式构建一个k个不同元素的有序序列
所以 (nk) 的定义为:给定n个元素的集合中包含k个元素子集的数量,它被称作二项式系数(binomial coefficients)。用公式表示为: n!(n−k)!∗k! 。
多项式系数
(nk1,k2,⋯,km)=n!k1!k2!⋯km!