不多说,放代码
import os
import sys
import time
import glob
import numpy as np
import torch
import utils
from PIL import Image
import logging
import argparse
import torch.utils
import torch.backends.cudnn as cudnn
import torch.nn as nn
from torch.autograd import Variable
from model import *
from multi_read_data import MemoryFriendlyLoader
parser = argparse.ArgumentParser("SCI")
parser.add_argument('--batch_size', type=int, default=16, help='batch size')
parser.add_argument('--cuda', default=True, type=bool, help='Use CUDA to train model')
parser.add_argument('--gpu', type=str, default='0', help='gpu device id')
parser.add_argument('--seed', type=int, default=2, help='random seed')
parser.add_argument('--epochs', type=int, default=100, help='epochs')
parser.add_argument('--lr', type=float, default=0.0003, help='learning rate')
parser.add_argument('--stage', type=int, default=3, help='epochs')
parser.add_argument('--save', type=str, default='EXP/', help='location of the data corpus')
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
args.save = args.save + '/' + 'Train-{}'.format(time.strftime("%Y%m%d-%H%M%S"))
utils.create_exp_dir(args.save, scripts_to_save=glob.glob('*.py'))
model_path = args.save + '/model_epochs/'
os.makedirs(model_path, exist_ok=True)
image_path = args.save + '/image_epochs/'
os.makedirs(image_path, exist_ok=True)
log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
format=log_format, datefmt='%m/%d %I:%M:%S %p')
fh = logging.FileHandler(os.path.join(args.save, 'log.txt'))
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)
logging.info("train file name = %s", os.path.split(__file__))
if torch.cuda.is_available():
if args.cuda:
torch.set_default_tensor_type('torch.cuda.FloatTensor')
if not args.cuda:
print("WARNING: It looks like you have a CUDA device, but aren't " +
"using CUDA.\nRun with --cuda for optimal training speed.")
torch.set_default_tensor_type('torch.FloatTensor')
else:
torch.set_default_tensor_type('torch.FloatTensor')
def save_images(tensor, path):
image_numpy = tensor[0].cpu().float().numpy()
image_numpy = (np.transpose(image_numpy, (1, 2, 0)))
im = Image.fromarray(np.clip(image_numpy * 255.0, 0, 255.0).astype('uint8'))
im.save(path, 'png')
def main():
if not torch.cuda.is_available():
logging.info('no gpu device available')
sys.exit(1)
np.random.seed(args.seed)
cudnn.benchmark = True
torch.manual_seed(args.seed)
cudnn.enabled = True
torch.cuda.manual_seed(args.seed)
logging.info('gpu device = %s' % args.gpu)
logging.info("args = %s", args)
model = Network(stage=args.stage)
model.enhance.in_conv.apply(model.weights_init)
model.enhance.conv.apply(model.weights_init)
model.enhance.out_conv.apply(model.weights_init)
model.calibrate.in_conv.apply(model.weights_init)
model.calibrate.convs.apply(model.weights_init)
model.calibrate.out_conv.apply(model.weights_init)
model = model.cuda()
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, betas=(0.9, 0.999), weight_decay=3e-4)
MB = utils.count_parameters_in_MB(model)
logging.info("model size = %f", MB)
print(MB)
train_low_data_names = '/root/autodl-tmp/our485/low'
TrainDataset = MemoryFriendlyLoader(img_dir=train_low_data_names, task='train')
test_low_data_names = '/root/autodl-tmp/eval15/low'
TestDataset = MemoryFriendlyLoader(img_dir=test_low_data_names, task='test')
# 创建 CUDA 随机数生成器
g = torch.Generator(device='cuda')
g.manual_seed(args.seed)
train_queue = torch.utils.data.DataLoader(
TrainDataset, batch_size=args.batch_size,
pin_memory=True, num_workers=0, shuffle=True, generator=g)
test_queue = torch.utils.data.DataLoader(
TestDataset, batch_size=1,
pin_memory=True, num_workers=0, shuffle=True, generator=g)
total_step = 0
for epoch in range(args.epochs):
model.train()
losses = []
for batch_idx, (input, _) in enumerate(train_queue):
total_step += 1
input = Variable(input, requires_grad=False).cuda()
optimizer.zero_grad()
loss = model._loss(input)
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), 5)
optimizer.step()
losses.append(loss.item())
logging.info('train-epoch %03d %03d %f', epoch, batch_idx, loss)
logging.info('train-epoch %03d %f', epoch, np.average(losses))
utils.save(model, os.path.join(model_path, 'weights_%d.pt' % epoch))
if epoch % 50 == 0 and total_step != 0:
logging.info('train %03d %f', epoch, loss)
model.eval()
with torch.no_grad():
for _, (input, image_name) in enumerate(test_queue):
input = Variable(input, volatile=True).cuda()
# image_name = image_name[0].split('\\')[-1].split('.')[0]
image_name_str = image_name[0]
# 使用上述方法处理 image_name_str
image_name = os.path.basename(image_name_str) # 这里使用 os.path.basename 方法
image_name = image_name.split('.')[0] # 如果还需要去掉文件扩展名,可以再进行一次分割
illu_list, ref_list, input_list, atten = model(input)
u_name = '%s.png' % (image_name + '_' + str(epoch))
u_path = os.path.join(image_path, u_name)
save_images(ref_list[0], u_path)
if __name__ == '__main__':
main()
注意事项:1:随机数生成器要做cuda上
2.保存路径要修改好。