SCINet 训练代码修改

不多说,放代码

import os
import sys
import time
import glob
import numpy as np
import torch
import utils
from PIL import Image
import logging
import argparse
import torch.utils
import torch.backends.cudnn as cudnn
import torch.nn as nn
from torch.autograd import Variable

from model import *
from multi_read_data import MemoryFriendlyLoader


parser = argparse.ArgumentParser("SCI")
parser.add_argument('--batch_size', type=int, default=16, help='batch size')
parser.add_argument('--cuda', default=True, type=bool, help='Use CUDA to train model')
parser.add_argument('--gpu', type=str, default='0', help='gpu device id')
parser.add_argument('--seed', type=int, default=2, help='random seed')
parser.add_argument('--epochs', type=int, default=100, help='epochs')
parser.add_argument('--lr', type=float, default=0.0003, help='learning rate')
parser.add_argument('--stage', type=int, default=3, help='epochs')
parser.add_argument('--save', type=str, default='EXP/', help='location of the data corpus')

args = parser.parse_args()

os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu

args.save = args.save + '/' + 'Train-{}'.format(time.strftime("%Y%m%d-%H%M%S"))
utils.create_exp_dir(args.save, scripts_to_save=glob.glob('*.py'))
model_path = args.save + '/model_epochs/'
os.makedirs(model_path, exist_ok=True)
image_path = args.save + '/image_epochs/'
os.makedirs(image_path, exist_ok=True)

log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
                    format=log_format, datefmt='%m/%d %I:%M:%S %p')
fh = logging.FileHandler(os.path.join(args.save, 'log.txt'))
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)

logging.info("train file name = %s", os.path.split(__file__))

if torch.cuda.is_available():
    if args.cuda:
        torch.set_default_tensor_type('torch.cuda.FloatTensor')
    if not args.cuda:
        print("WARNING: It looks like you have a CUDA device, but aren't " +
              "using CUDA.\nRun with --cuda for optimal training speed.")
        torch.set_default_tensor_type('torch.FloatTensor')
else:
    torch.set_default_tensor_type('torch.FloatTensor')


def save_images(tensor, path):
    image_numpy = tensor[0].cpu().float().numpy()
    image_numpy = (np.transpose(image_numpy, (1, 2, 0)))
    im = Image.fromarray(np.clip(image_numpy * 255.0, 0, 255.0).astype('uint8'))
    im.save(path, 'png')


def main():
    if not torch.cuda.is_available():
        logging.info('no gpu device available')
        sys.exit(1)

    np.random.seed(args.seed)
    cudnn.benchmark = True
    torch.manual_seed(args.seed)
    cudnn.enabled = True
    torch.cuda.manual_seed(args.seed)
    logging.info('gpu device = %s' % args.gpu)
    logging.info("args = %s", args)


    model = Network(stage=args.stage)

    model.enhance.in_conv.apply(model.weights_init)
    model.enhance.conv.apply(model.weights_init)
    model.enhance.out_conv.apply(model.weights_init)
    model.calibrate.in_conv.apply(model.weights_init)
    model.calibrate.convs.apply(model.weights_init)
    model.calibrate.out_conv.apply(model.weights_init)

    model = model.cuda()
    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, betas=(0.9, 0.999), weight_decay=3e-4)
    MB = utils.count_parameters_in_MB(model)
    logging.info("model size = %f", MB)
    print(MB)


    train_low_data_names = '/root/autodl-tmp/our485/low'
    TrainDataset = MemoryFriendlyLoader(img_dir=train_low_data_names, task='train')


    test_low_data_names = '/root/autodl-tmp/eval15/low'
    TestDataset = MemoryFriendlyLoader(img_dir=test_low_data_names, task='test')

    # 创建 CUDA 随机数生成器
    g = torch.Generator(device='cuda')
    g.manual_seed(args.seed)

    
    
    train_queue = torch.utils.data.DataLoader(
        TrainDataset, batch_size=args.batch_size,
        pin_memory=True, num_workers=0, shuffle=True, generator=g)

    test_queue = torch.utils.data.DataLoader(
        TestDataset, batch_size=1,
        pin_memory=True, num_workers=0, shuffle=True, generator=g)

    total_step = 0

    for epoch in range(args.epochs):
        model.train()
        losses = []
        for batch_idx, (input, _) in enumerate(train_queue):
            total_step += 1
            input = Variable(input, requires_grad=False).cuda()

            optimizer.zero_grad()
            loss = model._loss(input)
            loss.backward()
            nn.utils.clip_grad_norm_(model.parameters(), 5)
            optimizer.step()

            losses.append(loss.item())
            logging.info('train-epoch %03d %03d %f', epoch, batch_idx, loss)



        logging.info('train-epoch %03d %f', epoch, np.average(losses))
        utils.save(model, os.path.join(model_path, 'weights_%d.pt' % epoch))

        if epoch % 50 == 0 and total_step != 0:
            logging.info('train %03d %f', epoch, loss)
            model.eval()
            with torch.no_grad():
                for _, (input, image_name) in enumerate(test_queue):
                    input = Variable(input, volatile=True).cuda()
                    # image_name = image_name[0].split('\\')[-1].split('.')[0]
                    image_name_str = image_name[0]
            # 使用上述方法处理 image_name_str
                    image_name = os.path.basename(image_name_str)  # 这里使用 os.path.basename 方法
                    image_name = image_name.split('.')[0]  # 如果还需要去掉文件扩展名,可以再进行一次分割
                    illu_list, ref_list, input_list, atten = model(input)
                    u_name = '%s.png' % (image_name + '_' + str(epoch))
                    u_path = os.path.join(image_path, u_name)  
                    save_images(ref_list[0], u_path)

if __name__ == '__main__':
    main()

注意事项:1:随机数生成器要做cuda上
2.保存路径要修改好。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值