初次尝试使用Yolov11训练识别模型

1、模型初步训练

使用Roboflow平台进行模型初步训练,由于挑选了质量较高的图像,所以对于上传的九张猫的图片没有进行图像增强操作。

2、使用yolov11进行训练

训练代码如下:

import warnings

warnings.filterwarnings('ignore')
from ultralytics import YOLO

if __name__ == '__main__':
    model = YOLO(r'G:\Yolo\ultralytics-main\Cats-set\yolo11n.yaml')
    model.train(data=r'G:\Yolo\ultralytics-main\Cats-set\data.yaml',
                cache=False,
                imgsz=640,
                epochs=100,
                single_cls=False,  # 是否是单类别检测
                batch=8,
                close_mosaic=10,
                workers=0,
                #device='0',
                device = 'cpu',
                optimizer='SGD',
                amp=True,
                project='G:\Yolo\programs\myTrain.py',
                name='exp',
                )

打印模型结构如下:
在这里插入图片描述
训练结果如下:
在这里插入图片描述
目前还没看懂这训练出来个啥子…

orz

在看这篇yolov8实战第二天——yolov8训练过程、结果分析(保姆式解读)

使用参考:
手把手教你使用YOLOv11训练自己数据集(含环境搭建 、数据集查找、模型训练)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值