中心对数比变换(CLR)
知识点学习
论文书写
2020C:古代玻璃制品的成分分析与鉴别
①成分数据
②数据中心对数比变换(CLR)
③CLR变换的直观理解
④CLR的理论支撑
卡方检验
①卡方检验:卡方检验用于检测观察到的类别变量的分布是否与期望的不同
②常用的卡方检验:(1)单因素卡方检验/卡方拟合度检验 (2)二因素卡方检验/独立性卡方检验
卡方拟合度检验(一个分类变量的预期频率与观察到的频率相比是否存在显著性差异)
①卡方拟合度检验的步骤
(1)提出假设:零假设:期望值和观测值之间没有显著性差异
卡方独立性检验(检验两个类别变量之间是否存在关系)
①计算期望值
卡方检验的前提
相关性分析和差异性分析
相关性分析(皮尔逊相关 斯皮尔曼相关)
①相关性分析的方法:
(1)变量特性可以通过绘制散点图判断
(2)通过计算显著性系数判断是否相关(主要是p值)
(3)通过计算相关性系数判断相关性大小(主要是r值)
②显著性系数判定方法:
③相关性系数判定方法
④相关性系数计算方法:
(1)Pearson系数:皮尔逊相关系数,也叫线性相关系数,用于进行线性相关分析,当数据满足正态分布时会使用该系数。
(2)Spearman系数:当数据不满足正态分布时,使用该系数。
皮尔逊相关系数
斯皮尔曼相关系数
相关性系数判定方法
差异性分析算法
论文书写
2020C:古代玻璃制品的成分分析与鉴别
卡方检验
期望计数
皮尔逊卡方检验
Yates校正卡方检验
描述性统计
变异系数
偏度系数
峰度系数
结果分析
箱线图