带出请点击上面公众号,免费订阅。
交流思想,注重分析,更注重通过实例让您通俗易懂。包含但不限于:经典算法,机器学习,深度学习,LeetCode 题解,Kaggle 实战。期待您的到来!
01
—
回顾
近几天,分析了期望最大算法的基本思想,它是用来迭代求解隐式变量的利器,我们举例了两地的苹果好坏分布为例来求解隐式参数,苹果的出处,进而求出烟台或威海的苹果好坏的二项分布的参数:好果的概率。关于二项分布和离散式随机变量的基础理论知识,请参考:
注意在求解烟台或威海的好果概率这个分布参数时,我们在每个迭代时步求解了苹果来自于哪里的概率(这是一个隐变量),这个来自于哪里的概率,不就是一个聚类的操作吗,还记得怎么求得这个来自哪里的概率吗?
P_yan= PA/(PA + PB)