机器学习高斯混合模型:聚类原理分析(前篇)

本文介绍了高斯混合模型(GMM)的基本思想和聚类原理,通过苹果来源的隐变量求解过程,引出GMM在聚类问题中的角色。GMM是多个高斯分布的结合,用于数据建模和分类。文章阐述了如何通过GMM计算每个数据点属于各类别的概率,并强调了概率值在决策中的优势。最后,预告了GMM参数估计的EM算法将用于确定数据分布参数。
摘要由CSDN通过智能技术生成

带出请点击上面公众号,免费订阅。 

交流思想,注重分析,更注重通过实例让您通俗易懂。包含但不限于:经典算法,机器学习,深度学习,LeetCode 题解,Kaggle 实战。期待您的到来!


01

回顾

近几天,分析了期望最大算法的基本思想,它是用来迭代求解隐式变量的利器,我们举例了两地的苹果好坏分布为例来求解隐式参数,苹果的出处,进而求出烟台或威海的苹果好坏的二项分布的参数:好果的概率。关于二项分布和离散式随机变量的基础理论知识,请参考:

机器学习储备(11):说说离散型随机变量

机器学习储备(12):二项分布的例子解析


注意在求解烟台或威海的好果概率这个分布参数时,我们在每个迭代时步求解了苹果来自于哪里的概率(这是一个隐变量),这个来自于哪里的概率,不就是一个聚类的操作吗,还记得怎么求得这个来自哪里的概率吗?


P_yan= PA/(PA + PB)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值