
图像压缩
AIGC Studio
计算机专业研究生,人工智能领域优质创者者,研究计算机视觉、深度学习、图像生成、GAN、VAE、Stable Diffusion、Sora、AIGC视觉大模型等,有三维重建、VTK开发、点云处理和医学图像处理等开发经验。曾在滴滴,小米任职算法工程师。
展开
-
图像压缩技术总结
最近有空整理下之前自己做的一些东西,同时也和大家分享一下自己研究方向。关于图像压缩技术,主要分为有损压缩和无损压缩,其中无损压缩图像重建的质量相对较高,但是压缩比较小,一般只能压缩5倍以内,而有损压缩可以达到较大的压缩比,同时可以尽量保证图像的质量。为什么有损压缩可行?是由于我们所看到的图像中存在着冗余信息如时间冗余,空间冗余和视觉冗余等等,这些冗余信息的去处不会影响图像信息的表达,而且可以达到压缩图像的目的。因此有损压缩目前研究的学者也是相对较多。下面是我对图像压缩技术做的一个总结,我之前针对图像压缩领域原创 2022-01-11 10:54:22 · 2343 阅读 · 0 评论 -
图像压缩之矢量量化Vector quantization
clear all; data=imread('Cameraman.bmp'); %调入原始图像 data=double(data)/255; %归一化[m,n]=size(data); %求出图像的行数和列数 figure(1)subplot(1,2,1);imshow(data); %显示原始图像 title('原始图像')sub.原创 2021-06-01 16:25:30 · 1237 阅读 · 1 评论 -
图像的高频信息和低频信息代表的含义(以奇异值分解实现图像压缩为例附实验说明)
图像高频信息和低频信息区别,博主讲的很好,借用下,后面附上自己的实验说明。图像的频率:灰度值变化剧烈程度的指标,是灰度在平面空间上的梯度。(1)什么是低频? 低频就是颜色缓慢地变化,也就是灰度缓慢地变化,就代表着那是连续渐变的一块区域,这部分就是低频. 对于一幅图像来说,除去高频的就是低频了,也就是边缘以内的内容为低频,而边缘内的内容就是图像的大部分信息,即图像的大致概貌和轮廓,是图像的近似信息。(2)什么是高频? 反过来,高频就是频率变化快.图像中什么时候灰度变化快?...原创 2020-10-28 20:29:58 · 13226 阅读 · 12 评论 -
SVD奇异值分解应用之图像压缩
import numpy as npimport matplotlib.pyplot as pltimport matplotlib.image as mpimg# 读取图片img_eg = mpimg.imread(r"F:\test21.jpg")print(img_eg.shape)# 奇异值分解img_temp = img_eg.reshape(526, 640 * 3...原创 2019-12-04 15:10:28 · 1316 阅读 · 2 评论 -
图像压缩之基于神经网络压缩(BP)
% ************************************************* % **** BP_Compress/Decompress *** % *************************************************clc;clear all;close all;%function Codec [Image,I,H]=Re...原创 2020-07-31 17:32:40 · 1848 阅读 · 2 评论 -
图像压缩之小波变换(DWT)
长期以来,图像压缩编码利用离散余弦变换(DCT)作为主要的变换技术,并成功的应用于各种标准,比如JPEG、MPEG-1、MPEG-2。但是,在基于DCT图像变换编码中,人们将图像分为88像素或者1616像素的块来处理,从而容易出现方块效应与蚊式噪声。小波变换是全局变换,在时域和频域都由良好的局部优化性能。小波变换将图像的像素解相关的变换系数进行编码,比经典编码的效率更高,而且几乎没有失真,在应用中易于考虑人类的视觉特性,从而成为图像压缩编码的主要技术之一。小波变换在信号的高频部分可以取得较好的时间分辨率:在原创 2020-07-31 17:27:26 · 14508 阅读 · 16 评论 -
图像压缩之傅里叶变换(FFT)
关于图像的傅里叶变换,详情请见链接图像傅里叶变换博主大大讲的非常好。cr = 0.025;% 表示压缩比为40倍%读入并显示原始图像I1 = imread('bar.bmp');I1= rgb2gray(I1);I1 = double(I1)/255;%figure;%imshow(I1);title('ORI')%对图像进行FFTI1 = double(I1);fftcoe = blkproc(I1, [8 8], 'fft2(x)');coevar = im2col(fftco原创 2020-07-31 17:21:21 · 7921 阅读 · 0 评论 -
图像压缩之DCT变换
离散余弦变换经常被信号处理和图像处理使用,用于对信号和图像(包括静止图像和运动图像)进行有损数据压缩。这是由于离散余弦变换具有很强的"能量集中"特性:大多数的自然信号(包括声音和图像)的能量都集中在离散余弦变换后的低频部分,而且当信号具有接近马尔科夫过程(Markov processes)的统计特性时,离散余弦变换的去相关性接近于K-L变换(Karhunen-Loève 变换--它具有最优的去相关性)的性能。例如,在静止图像编码标准JPEG中,在运动图像编码标准MJPEG和MPEG的各个标准中都使用了离散余原创 2020-07-31 17:09:34 · 7819 阅读 · 6 评论 -
图像压缩之奇异值分解(SVD)
最近有点时间把之前研究的图像压缩相关内容做以下记录和总结,包括一些经典方法代码实现以及原理介绍。首先直接上Lena女神原图照片。对于SVD分解来说,选取不同的奇异值数量压缩倍数也不一样,简单理解就是选取的奇异值数量越多压缩倍数越小,反之越大,SVD的缺点就是以牺牲图像细节信息来达到图像压缩的目的。这也是为什么奇异值分解的图像压缩方法没有像DCT,小波变换一样成为JPEG压缩的标准吧。下面针对以下数据做一定实验,通过选取奇异值数量k为10,20,30,40来分别看一下图像压缩效果,如何能在尽量少舍原创 2020-07-31 16:59:37 · 6716 阅读 · 1 评论