
机器学习
文章平均质量分 83
AIGC Studio
计算机专业研究生,人工智能领域优质创者者,研究计算机视觉、深度学习、图像生成、GAN、VAE、Stable Diffusion、Sora、AIGC视觉大模型等,有三维重建、VTK开发、点云处理和医学图像处理等开发经验。曾在滴滴,小米任职算法工程师。
展开
-
AIGC系列之:Variational Auto Encoder-VAE模块
变分自动编码器(Variational autoEncoder,VAE)是生成模型的一种。这些方法的主要目标是从对象的学习分布中生成新的采样数据。2014 年,Kingma et al.提出了这种VAE生成模型,该模型可以从隐变量空间的概率分布中学习潜在属性并构造新的元素。VAE 包含两个部分:编码器 encoder 和解码器 decoder。原创 2023-11-27 17:39:32 · 337 阅读 · 0 评论 -
图像的高频信息和低频信息代表的含义(以奇异值分解实现图像压缩为例附实验说明)
图像高频信息和低频信息区别,博主讲的很好,借用下,后面附上自己的实验说明。图像的频率:灰度值变化剧烈程度的指标,是灰度在平面空间上的梯度。(1)什么是低频? 低频就是颜色缓慢地变化,也就是灰度缓慢地变化,就代表着那是连续渐变的一块区域,这部分就是低频. 对于一幅图像来说,除去高频的就是低频了,也就是边缘以内的内容为低频,而边缘内的内容就是图像的大部分信息,即图像的大致概貌和轮廓,是图像的近似信息。(2)什么是高频? 反过来,高频就是频率变化快.图像中什么时候灰度变化快?...原创 2020-10-28 20:29:58 · 13226 阅读 · 12 评论 -
各种机器学习方法实现多分类(KNN,Logistics,Decision tree,byeis,SVM)以鸢尾花数据集为例
之前做的关于分类问题大都是基于CNN实现图像分类如手写体识别-CNN实现minst识别,已有的参考也是比较多,还整理过一个关于PIMA糖尿病人数据集的分类,该问题属于对于数据的二分类问题,根据数据判断病人是否患有糖尿病-keras实现糖尿病预测,鸢尾花数据集分类是一个多分类问题,至此关于数据的二分类和多分类问题都已经整理完毕。这也是一个小的技巧,当遇到一个关于数据的二分类或者是多分类问题的时候可以先找找一些相关的经典的数据集分类问题,比如这里提到的PIMA数据集,鸢尾花数据集还有房价预测数据集等等,针对这些原创 2020-10-12 10:56:44 · 3097 阅读 · 0 评论 -
用Keras搭建一个神经网络实现糖尿病检测
这几天一直在弄导师交代的数据分析任务,从此博客中收到很大启发,原来的博客地址:搭建神经网络教程概述这里不需要编写太多的代码,不过我们将一步步慢慢地告诉你怎么以后怎么创建自己的模型。教程将会涵盖以下步骤:加载数据 定义模型 编译模型 训练模型 评估模型 结合所有步骤在一起这个教程的前置条件:有 python 2 或 3 的环境和编程基础 安装并配置好 Scipy...转载 2019-12-12 14:24:03 · 2082 阅读 · 0 评论 -
CNN经典结构1(AlexNet,ZFNet,OverFeat,VGG,GoogleNet,ResNet)
转载自https://www.cnblogs.com/liaohuiqiang/p/9606901.html论文笔记:CNN经典结构1(AlexNet,ZFNet,OverFeat,VGG,GoogleNet,ResNet),学习学习。欢迎交流!前言本文主要介绍2012-2015年的一些经典CNN结构,从AlexNet,ZFNet,OverFeat到VGG,GoogleNetv1-v4...转载 2019-10-24 14:42:21 · 600 阅读 · 0 评论 -
贝叶斯分类器实现Mnist手写数字识别(TensorFlow实现)
import numpy as npfrom tensorflow.examples.tutorials.mnist import input_datamnist = input_data.read_data_sets('MNIST_data', one_hot=False)train_num = 5000test_num = 100class_num = 10desimon = ...原创 2019-09-02 19:25:09 · 4827 阅读 · 4 评论 -
搞懂贝叶斯分类器
看西瓜书第七章贝叶斯分类器,有点懵懵的,这篇文章写得太好了,浅显易懂,有种醍醐灌顶的赶脚,O(∩_∩)O哈哈~感谢博主。贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。而朴素朴素贝叶斯分类是贝叶斯分类中最简单,也是常见的一种分类方法。这篇文章我尽可能用直白的话语总结一下我们学习会上讲到的朴素贝叶斯分类算法,希望有利于他人理解。1 分类问题综述...转载 2019-09-02 21:31:30 · 396 阅读 · 0 评论 -
K-means算法在西瓜数据集4.0上实验(Python实现)
# -*- coding: utf-8 -*-import numpy as npimport matplotlib.pyplot as pltimport matplotlib.animation as animationdef kmeans(data, center_ids, max_err=0.0001, max_round=30): init_centers = []...原创 2019-09-06 20:50:19 · 6121 阅读 · 2 评论 -
K-means聚类算法原理及Python实现
本文完成程序及测试数据集详细见:数据集链接本文主要内容:1.k-means解决的问题;2.k-means原理介绍;3.k-means的简单实现。1.k-means解决的问题k-means算法属于无监督学习的一种聚类算法,其目的为:在不知数据所属类别及类别数量的前提下,依据...转载 2019-09-06 21:00:14 · 1219 阅读 · 0 评论 -
CNN经典网络模型演进:从LeNet到DenseNet
转载自:https://www.cnblogs.com/skyfsm/p/8451834.html学习。CNN网络架构演进:从LeNet到DenseNet卷积神经网络可谓是现在深度学习领域中大红大紫的网络框架,尤其在计算机视觉领域更是一枝独秀。CNN从90年代的LeNet开始,21世纪初沉寂了10年,直到12年AlexNet开始又再焕发第二春,从ZF Net到VGG,GoogLeNet再...转载 2019-09-25 16:12:39 · 670 阅读 · 0 评论 -
Keras实现LeNet识别mnist
转载自:https://www.jianshu.com/p/d39e9e75a410Keras是一款特别友好的基于Python的深度学习库,甚至比Tensorflow还友好。关于Keras的介绍和配置,可以看我之前的文章Keras的介绍与配置,也可以直接查看官网中文文档接下来我们要做被誉为机器学习届的Hello World的手写数字识别。真的掌握了这个,就已经把Keras掌握得七七八八了。...转载 2019-09-25 16:42:12 · 914 阅读 · 0 评论 -
在Pycharm中安装Pandas库方法(简单易懂)
Python、Anaconda、Pandas以及PyCharm的安装文章来源:企鹅号 - Michael的笔记本开发环境的搭建是一件入门比较头疼的事情,在上期的文稿基础上,增加一项Anaconda的安装介绍。Anaconda是Python的一个发行版本,安装好了Anaconda就相当于安装好了Python,并且里面还集成了很多Python科学计算的第三方库。比如我们需要用到的Pandas、...转载 2019-09-02 17:18:31 · 196281 阅读 · 42 评论 -
Win10系统下载Anaconda并安装tensorflow框架
点击安装链接,亲测,已经安装好了哦。原创 2019-07-15 11:28:24 · 263 阅读 · 0 评论 -
决策树之CART算法
决策树的另一种实现,即CART算法。又叫做分类回归树。CART决策树是基于基尼指数来选择划分属性,基尼指数可以来度量数据集的纯度。基尼指数越小,数据集的纯度就越高,最终选择基尼指数最小的属性作为最优划分属性。本文整理了自己的一些见解和一位大神还有steve_99的blog.Contents 1. CART算法的认识 2. CART算法的原理 3. CART算法的...原创 2016-11-08 21:19:30 · 2323 阅读 · 0 评论 -
决策数之C4.5算法
C4.5决策树构建分析我们说 C4.5 算法是对 ID3 算法的改进,C4.5就是基于 ID3 上的一个改进算法。C4.5是基于增益率来选择划分属性,解决了ID3算法的缺点,为了减少ID3对可取值数目较多的属性有所偏好所带来的影响,C4.5对可取值数目较少的属性有所偏好,所以C4.5并不是直接选择增益率最大的候选划分属性,而是用了一个启发式,就是先从候选划分属性中找出信息增益高于平均水平的...原创 2016-11-08 21:22:51 · 905 阅读 · 0 评论 -
机器学习的各种分类器,MATLAB实现代码
train_data是训练特征数据, train_label是分类标签。Predict_label是预测的标签。MatLab训练数据, 得到语义标签向量 Scores(概率输出)。1.逻辑回归(多项式MultiNomial logistic Regression)Factor = mnrfit(train_data, train_label);Scores = mnrv原创 2017-03-29 14:51:48 · 9153 阅读 · 2 评论 -
对于人脸识别检测中出现遮挡问题的解决方案
人脸识别中发型遮挡检测方法研究 摘要: 人脸识别中,发型遮挡是一种十分常见的遮挡类型,并且对人脸的正确识别具有极大的干扰。提出一种将头发的颜色模型和发型特征相结合的遮挡检测方法。首先,采用机器学习的方法,对头发的颜色进行学习建模。然后,利用发际线的特征,将人脸划分为若干扇形并分块,采用逐步精细的方法对人脸的发型遮挡区域进行检测。实验结果表明,该方法对人脸区域发原创 2017-04-22 12:23:27 · 35853 阅读 · 2 评论 -
opencv+CNN实现人脸识别
在知乎上看到一个有趣的专栏,讲的是国外(日本?)一个牛人用OpenCV+CNN实现了一个人脸识别工具,觉得挺好玩的,所以fork下来自己也研究了一下,在这里做一个总结:项目描述总的来说,要实现最终的人脸识别功能,就要分别实现以下几个小目标:通过笔记本自带的摄像头实现实时的人脸检测,这里用到了python下的openCV;为了得到用于识别模型的输入,还需要从已有照片中提取出目转载 2017-03-30 16:50:11 · 25503 阅读 · 14 评论 -
调用Matlab摄像头函数,拍照并保存
一、读取摄像头视频如题目,首先你需要有一个摄像头(usb或者本本自带的都可以)并且安装好了驱动,保证设备可以正常使用。先来段简单的通过MATLAB显示摄像头视频的代码: 1 vid = videoinput('winvideo',1);2 preview(vid); 通过上面两段代码就可以看到摄像头里面的画面。第1代码是通过videoinput()创建视频输入原创 2017-05-17 19:19:03 · 24996 阅读 · 13 评论 -
周志华《机器学习》第一章绪论部分学习笔记及习题练习
部分学习笔记:习题练习:原创 2019-05-16 20:20:59 · 506 阅读 · 0 评论 -
周志华《机器学习》第一章绪论学习笔记+习题
第一章 绪论1.1 引言人类可以对很多未知的事物作出有效的预判,是因为我们已经积累了许多经验,而通过对经验的利用,就能对心的情况作出有效的决策。同样的预判能力,计算机能够完成吗?机器学习正是这样一门学科,它致力于研究如何通过计算的手段,利用经验来改善系统自身的性能。机器学习所研究的主要内容就是“学习算法”,“学习算法”就是指计算机通过从数据中产生“模型”的过...转载 2019-05-16 20:35:25 · 905 阅读 · 0 评论 -
周志华《机器学习》第二章模型评估与选择笔记+习题
第二章 模型评估与选择2.1经验误差与过拟合 错误率:分类错误的样本占样本总数的比例。 E = a/m 精度:1 - a/m 训练误差/经验误差:训练集上的误差 泛化误差:新样本上的误差。2.2评估方法 区分数据集,把数据集分为两部分,一部分是训练集S另外一部分是测试集...转载 2019-05-16 20:40:48 · 4254 阅读 · 0 评论 -
周志华《机器学习》第三章线性模型笔记+习题
第3章 线性模型所谓线性模型,也即是:1. 假定示例有dd个属性,x=(x1,x2,...,xd)x=(x1,x2,...,xd)2. 试图通过属性的线性组合进行预测f(x)=∑i=1dwixi+bf(x)=∑i=1dwixi+b用向量形式表示就是:f(x)=wTx+bf(x)=wTx+b线性模型虽然简单,但却是基础。先研究线性、单属性的线性回归问题,便可以进一步研究非线...转载 2019-05-16 20:45:48 · 11173 阅读 · 0 评论 -
决策树之ID3算法
概述ID3算法是构建决策树算法中一种非常重要的算法,可以说它是学习决策树算法的基础吧。ID3又叫做迭代二分器,是以信息增益为准则选择划分属性的,对可取值数目较多的属性有所偏好。本文整合了两位大神的博客,介绍了一些基本原理和西瓜书的随对应的决策树习题4.3,再次感谢。引言如果你是刚刚才接触到有关决策树的相关内容,那么你可能就会有一些疑问,什么是决策树?对于什么是决策树这个话题,如果站在...原创 2016-11-08 21:14:22 · 1665 阅读 · 0 评论